First commit

This commit is contained in:
2025-09-03 19:24:26 +10:00
parent 2bf7123ae2
commit 1e1402795f
30 changed files with 7582 additions and 33 deletions

617
vibevoice_nodes.py Normal file
View File

@ -0,0 +1,617 @@
import os
import re
import torch
import numpy as np
import random
from huggingface_hub import hf_hub_download, snapshot_download
import logging
import gc
import folder_paths
import comfy.model_management as model_management
import comfy.model_patcher
from comfy.utils import ProgressBar
from comfy.model_management import throw_exception_if_processing_interrupted
from transformers import set_seed, AutoTokenizer, BitsAndBytesConfig
from .vibevoice.modular.modeling_vibevoice_inference import VibeVoiceForConditionalGenerationInference
from .vibevoice.processor.vibevoice_processor import VibeVoiceProcessor
from .vibevoice.processor.vibevoice_tokenizer_processor import VibeVoiceTokenizerProcessor
from .vibevoice.modular.modular_vibevoice_text_tokenizer import VibeVoiceTextTokenizerFast
try:
import librosa
except ImportError:
print("VibeVoice Node: `librosa` is not installed. Resampling of reference audio will not be available.")
librosa = None
logger = logging.getLogger(__name__)
LOADED_MODELS = {}
VIBEVOICE_PATCHER_CACHE = {}
MODEL_CONFIGS = {
"VibeVoice-1.5B": {
"repo_id": "microsoft/VibeVoice-1.5B",
"size_gb": 3.0,
"tokenizer_repo": "Qwen/Qwen2.5-1.5B"
},
"VibeVoice-Large": {
"repo_id": "microsoft/VibeVoice-Large",
"size_gb": 17.4,
"tokenizer_repo": "Qwen/Qwen2.5-7B"
}
}
ATTENTION_MODES = ["eager", "sdpa", "flash_attention_2"]
def cleanup_old_models(keep_cache_key=None):
"""Clean up old models, optionally keeping one specific model loaded"""
global LOADED_MODELS, VIBEVOICE_PATCHER_CACHE
keys_to_remove = []
# Clear LOADED_MODELS
for key in list(LOADED_MODELS.keys()):
if key != keep_cache_key:
keys_to_remove.append(key)
del LOADED_MODELS[key]
# Clear VIBEVOICE_PATCHER_CACHE - but more carefully
for key in list(VIBEVOICE_PATCHER_CACHE.keys()):
if key != keep_cache_key:
# Set the model/processor to None but don't delete the patcher itself
# This lets ComfyUI's model management handle the patcher cleanup
try:
patcher = VIBEVOICE_PATCHER_CACHE[key]
if hasattr(patcher, 'model') and patcher.model:
patcher.model.model = None
patcher.model.processor = None
# Remove from our cache but let ComfyUI handle the rest
del VIBEVOICE_PATCHER_CACHE[key]
except Exception as e:
logger.warning(f"Error cleaning up patcher {key}: {e}")
if keys_to_remove:
logger.info(f"Cleaned up cached models: {keys_to_remove}")
gc.collect()
model_management.soft_empty_cache()
class VibeVoiceModelHandler(torch.nn.Module):
"""A torch.nn.Module wrapper to hold the VibeVoice model and processor."""
def __init__(self, model_pack_name, attention_mode="eager", use_llm_4bit=False):
super().__init__()
self.model_pack_name = model_pack_name
self.attention_mode = attention_mode
self.use_llm_4bit = use_llm_4bit
self.cache_key = f"{model_pack_name}_attn_{attention_mode}"
self.model = None
self.processor = None
self.size = int(MODEL_CONFIGS[model_pack_name].get("size_gb", 4.0) * (1024**3))
def load_model(self, device, attention_mode="eager"):
self.model, self.processor = VibeVoiceLoader.load_model(self.model_pack_name, device, attention_mode, use_llm_4bit=self.use_llm_4bit)
self.model.to(device)
class VibeVoicePatcher(comfy.model_patcher.ModelPatcher):
"""Custom ModelPatcher for managing VibeVoice models in ComfyUI."""
def __init__(self, model, attention_mode="eager", *args, **kwargs):
super().__init__(model, *args, **kwargs)
self.attention_mode = attention_mode
self.cache_key = model.cache_key
@property
def is_loaded(self):
"""Check if the model is currently loaded in memory."""
return hasattr(self, 'model') and self.model is not None and hasattr(self.model, 'model') and self.model.model is not None
def patch_model(self, device_to=None, *args, **kwargs):
target_device = self.load_device
if self.model.model is None:
logger.info(f"Loading VibeVoice models for '{self.model.model_pack_name}' to {target_device}...")
mode_names = {
"eager": "Eager (Most Compatible)",
"sdpa": "SDPA (Balanced Speed/Compatibility)",
"flash_attention_2": "Flash Attention 2 (Fastest)"
}
logger.info(f"Attention Mode: {mode_names.get(self.attention_mode, self.attention_mode)}")
self.model.load_model(target_device, self.attention_mode)
self.model.model.to(target_device)
return super().patch_model(device_to=target_device, *args, **kwargs)
def unpatch_model(self, device_to=None, unpatch_weights=True, *args, **kwargs):
if unpatch_weights:
logger.info(f"Offloading VibeVoice models for '{self.model.model_pack_name}' ({self.attention_mode}) to {device_to}...")
self.model.model = None
self.model.processor = None
# Clear using the correct cache key
if self.cache_key in LOADED_MODELS:
del LOADED_MODELS[self.cache_key]
logger.info(f"Cleared LOADED_MODELS cache for: {self.cache_key}")
# DON'T delete from VIBEVOICE_PATCHER_CACHE here - let ComfyUI handle it
# This prevents the IndexError in ComfyUI's model management
# Force garbage collection
gc.collect()
model_management.soft_empty_cache()
return super().unpatch_model(device_to, unpatch_weights, *args, **kwargs)
class VibeVoiceLoader:
@staticmethod
def get_model_path(model_name: str):
if model_name not in MODEL_CONFIGS:
raise ValueError(f"Unknown VibeVoice model: {model_name}")
vibevoice_path = os.path.join(folder_paths.get_folder_paths("tts")[0], "VibeVoice")
model_path = os.path.join(vibevoice_path, model_name)
index_file = os.path.join(model_path, "model.safetensors.index.json")
if not os.path.exists(index_file):
print(f"Downloading VibeVoice model: {model_name}...")
repo_id = MODEL_CONFIGS[model_name]["repo_id"]
snapshot_download(repo_id=repo_id, local_dir=model_path)
return model_path
@staticmethod
def _check_attention_compatibility(attention_mode: str, torch_dtype, device_name: str = ""):
"""Check if the requested attention mode is compatible with current setup."""
# Check for SDPA availability (PyTorch 2.0+)
if attention_mode == "sdpa":
if not hasattr(torch.nn.functional, 'scaled_dot_product_attention'):
logger.warning("SDPA not available (requires PyTorch 2.0+), falling back to eager")
return "eager"
# Check for Flash Attention availability
elif attention_mode == "flash_attention_2":
if not hasattr(torch.nn.functional, 'scaled_dot_product_attention'):
logger.warning("Flash Attention not available, falling back to eager")
return "eager"
elif torch_dtype == torch.float32:
logger.warning("Flash Attention not recommended with float32, falling back to SDPA")
return "sdpa" if hasattr(torch.nn.functional, 'scaled_dot_product_attention') else "eager"
# Just informational messages, no forced fallbacks
if device_name and torch.cuda.is_available():
if "RTX 50" in device_name or "Blackwell" in device_name:
if attention_mode == "flash_attention_2":
logger.info(f"Using Flash Attention on {device_name}")
elif attention_mode == "sdpa":
logger.info(f"Using SDPA on {device_name}")
return attention_mode
@staticmethod
def load_model(model_name: str, device, attention_mode: str = "eager", use_llm_4bit: bool = False):
# Validate attention mode
if attention_mode not in ATTENTION_MODES:
logger.warning(f"Unknown attention mode '{attention_mode}', falling back to eager")
attention_mode = "eager"
if use_llm_4bit and attention_mode == "flash_attention_2":
attention_mode = "sdpa"
# Create cache key that includes attention mode
cache_key = f"{model_name}_attn_{attention_mode}"
if cache_key in LOADED_MODELS:
logger.info(f"Using cached model with {attention_mode} attention")
return LOADED_MODELS[cache_key]
model_path = VibeVoiceLoader.get_model_path(model_name)
logger.info(f"Loading VibeVoice model components from: {model_path}")
tokenizer_repo = MODEL_CONFIGS[model_name].get("tokenizer_repo")
try:
tokenizer_file_path = hf_hub_download(repo_id=tokenizer_repo, filename="tokenizer.json")
except Exception as e:
raise RuntimeError(f"Could not download tokenizer.json for {tokenizer_repo}. Error: {e}")
vibevoice_tokenizer = VibeVoiceTextTokenizerFast(tokenizer_file=tokenizer_file_path)
audio_processor = VibeVoiceTokenizerProcessor()
processor = VibeVoiceProcessor(tokenizer=vibevoice_tokenizer, audio_processor=audio_processor)
torch_dtype = model_management.text_encoder_dtype(device)
device_name = torch.cuda.get_device_name() if torch.cuda.is_available() else ""
# Check compatibility and potentially fall back to safer mode
final_attention_mode = VibeVoiceLoader._check_attention_compatibility(
attention_mode, torch_dtype, device_name
)
# Build optional 4-bit config (LLM only)
quant_config = None
if use_llm_4bit:
quant_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_use_double_quant=True,
bnb_4bit_compute_dtype=torch.bfloat16,
)
logger.info(f"Requested attention mode: {attention_mode}")
if final_attention_mode != attention_mode:
logger.info(f"Using attention mode: {final_attention_mode} (automatic fallback)")
# Update cache key to reflect actual mode used
cache_key = f"{model_name}_attn_{final_attention_mode}"
if cache_key in LOADED_MODELS:
return LOADED_MODELS[cache_key]
else:
logger.info(f"Using attention mode: {final_attention_mode}")
logger.info(f"Final attention implementation: {final_attention_mode}")
# Modify config for non-flash attention modes
if final_attention_mode in ["eager", "sdpa"]:
import json
config_path = os.path.join(model_path, "config.json")
if os.path.exists(config_path):
try:
with open(config_path, 'r') as f:
config = json.load(f)
# Remove flash attention settings
removed_keys = []
for key in ['_attn_implementation', 'attn_implementation', 'use_flash_attention_2']:
if key in config:
config.pop(key)
removed_keys.append(key)
if removed_keys:
with open(config_path, 'w') as f:
json.dump(config, f, indent=2)
logger.info(f"Removed FlashAttention settings from config.json: {removed_keys}")
except Exception as e:
logger.warning(f"Could not modify config.json: {e}")
try:
model = VibeVoiceForConditionalGenerationInference.from_pretrained(
model_path,
torch_dtype=torch.bfloat16 if quant_config else torch_dtype,
attn_implementation=final_attention_mode,
device_map="auto" if quant_config else device,
quantization_config=quant_config, # <- forwarded if supported
)
model.eval()
setattr(model, "_llm_4bit", bool(quant_config))
# Store with the actual attention mode used (not the requested one)
LOADED_MODELS[cache_key] = (model, processor)
logger.info(f"Successfully loaded model with {final_attention_mode} attention")
return model, processor
except Exception as e:
logger.error(f"Failed to load model with {final_attention_mode} attention: {e}")
# Progressive fallback: flash -> sdpa -> eager
if final_attention_mode == "flash_attention_2":
logger.info("Attempting fallback to SDPA...")
return VibeVoiceLoader.load_model(model_name, device, "sdpa")
elif final_attention_mode == "sdpa":
logger.info("Attempting fallback to eager...")
return VibeVoiceLoader.load_model(model_name, device, "eager")
else:
# If eager fails, something is seriously wrong
raise RuntimeError(f"Failed to load model even with eager attention: {e}")
def set_vibevoice_seed(seed: int):
"""Sets the seed for torch, numpy, and random, handling large seeds for numpy."""
if seed == 0:
seed = random.randint(1, 0xffffffffffffffff)
MAX_NUMPY_SEED = 2**32 - 1
numpy_seed = seed % MAX_NUMPY_SEED
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(seed)
np.random.seed(numpy_seed)
random.seed(seed)
def parse_script_1_based(script: str) -> tuple[list[tuple[int, str]], list[int]]:
"""
Parses a 1-based speaker script into a list of (speaker_id, text) tuples
and a list of unique speaker IDs in the order of their first appearance.
Internally, it converts speaker IDs to 0-based for the model.
"""
parsed_lines = []
speaker_ids_in_script = [] # This will store the 1-based IDs from the script
for line in script.strip().split("\n"):
if not (line := line.strip()): continue
match = re.match(r'^Speaker\s+(\d+)\s*:\s*(.*)$', line, re.IGNORECASE)
if match:
speaker_id = int(match.group(1))
if speaker_id < 1:
logger.warning(f"Speaker ID must be 1 or greater. Skipping line: '{line}'")
continue
text = ' ' + match.group(2).strip()
# Internally, the model expects 0-based indexing for speakers
internal_speaker_id = speaker_id - 1
parsed_lines.append((internal_speaker_id, text))
if speaker_id not in speaker_ids_in_script:
speaker_ids_in_script.append(speaker_id)
else:
logger.warning(f"Could not parse line, skipping: '{line}'")
return parsed_lines, sorted(list(set(speaker_ids_in_script)))
def preprocess_comfy_audio(audio_dict: dict, target_sr: int = 24000) -> np.ndarray:
"""
Converts a ComfyUI AUDIO dict to a mono NumPy array, resampling if necessary.
"""
if not audio_dict: return None
waveform_tensor = audio_dict.get('waveform')
if waveform_tensor is None or waveform_tensor.numel() == 0: return None
waveform = waveform_tensor[0].cpu().numpy()
original_sr = audio_dict['sample_rate']
if waveform.ndim > 1:
waveform = np.mean(waveform, axis=0)
# Check for invalid values
if np.any(np.isnan(waveform)) or np.any(np.isinf(waveform)):
logger.error("Audio contains NaN or Inf values, replacing with zeros")
waveform = np.nan_to_num(waveform, nan=0.0, posinf=0.0, neginf=0.0)
# Ensure audio is not completely silent or has extreme values
if np.all(waveform == 0):
logger.warning("Audio waveform is completely silent")
# Normalize extreme values
max_val = np.abs(waveform).max()
if max_val > 10.0:
logger.warning(f"Audio values are very large (max: {max_val}), normalizing")
waveform = waveform / max_val
if original_sr != target_sr:
if librosa is None:
raise ImportError("`librosa` package is required for audio resampling. Please install it with `pip install librosa`.")
logger.warning(f"Resampling reference audio from {original_sr}Hz to {target_sr}Hz.")
waveform = librosa.resample(y=waveform, orig_sr=original_sr, target_sr=target_sr)
# Final check after resampling
if np.any(np.isnan(waveform)) or np.any(np.isinf(waveform)):
logger.error("Audio contains NaN or Inf after resampling, replacing with zeros")
waveform = np.nan_to_num(waveform, nan=0.0, posinf=0.0, neginf=0.0)
return waveform.astype(np.float32)
def check_for_interrupt():
try:
throw_exception_if_processing_interrupted()
return False
except:
return True
class VibeVoiceTTSNode:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"model_name": (list(MODEL_CONFIGS.keys()), {
"tooltip": "Select the VibeVoice model to use. Models will be downloaded automatically if not present."
}),
"text": ("STRING", {
"multiline": True,
"default": "Speaker 1: Hello from ComfyUI!\nSpeaker 2: VibeVoice sounds amazing.",
"tooltip": "The script for the conversation. Use 'Speaker 1:', 'Speaker 2:', etc. to assign lines to different voices. Each speaker line should be on a new line."
}),
"quantize_llm_4bit": ("BOOLEAN", {
"default": False, "label_on": "Q4 (LLM only)", "label_off": "Full precision",
"tooltip": "Quantize the Qwen2.5 LLM to 4-bit NF4 via bitsandbytes. Diffusion head stays BF16/FP32."
}),
"attention_mode": (["eager", "sdpa", "flash_attention_2"], {
"default": "sdpa",
"tooltip": "Attention implementation: Eager (safest), SDPA (balanced), Flash Attention 2 (fastest but may cause issues on some GPUs like RTX 5090)"
}),
"cfg_scale": ("FLOAT", {
"default": 1.3, "min": 1.0, "max": 2.0, "step": 0.05,
"tooltip": "Classifier-Free Guidance scale. Higher values increase adherence to the voice prompt but may reduce naturalness. Recommended: 1.3"
}),
"inference_steps": ("INT", {
"default": 10, "min": 1, "max": 50,
"tooltip": "Number of diffusion steps for audio generation. More steps can improve quality but take longer. Recommended: 10"
}),
"seed": ("INT", {
"default": 42, "min": 0, "max": 0xFFFFFFFFFFFFFFFF, "control_after_generate": True,
"tooltip": "Seed for reproducibility. Set to 0 for a random seed on each run."
}),
"do_sample": ("BOOLEAN", {
"default": True, "label_on": "Enabled (Sampling)", "label_off": "Disabled (Greedy)",
"tooltip": "Enable to use sampling methods (like temperature and top_p) for more varied output. Disable for deterministic (greedy) decoding."
}),
"temperature": ("FLOAT", {
"default": 0.95, "min": 0.0, "max": 2.0, "step": 0.01,
"tooltip": "Controls randomness. Higher values make the output more random and creative, while lower values make it more focused and deterministic. Active only if 'do_sample' is enabled."
}),
"top_p": ("FLOAT", {
"default": 0.95, "min": 0.0, "max": 1.0, "step": 0.01,
"tooltip": "Nucleus sampling (Top-P). The model samples from the smallest set of tokens whose cumulative probability exceeds this value. Active only if 'do_sample' is enabled."
}),
"top_k": ("INT", {
"default": 0, "min": 0, "max": 500, "step": 1,
"tooltip": "Top-K sampling. Restricts sampling to the K most likely next tokens. Set to 0 to disable. Active only if 'do_sample' is enabled."
}),
"force_offload": ("BOOLEAN", {
"default": False, "label_on": "Force Offload", "label_off": "Keep in VRAM",
"tooltip": "Force model to be offloaded from VRAM after generation. Useful to free up memory between generations but may slow down subsequent runs."
}),
},
"optional": {
"speaker_1_voice": ("AUDIO", {"tooltip": "Reference audio for 'Speaker 1' in the script."}),
"speaker_2_voice": ("AUDIO", {"tooltip": "Reference audio for 'Speaker 2' in the script."}),
"speaker_3_voice": ("AUDIO", {"tooltip": "Reference audio for 'Speaker 3' in the script."}),
"speaker_4_voice": ("AUDIO", {"tooltip": "Reference audio for 'Speaker 4' in the script."}),
}
}
RETURN_TYPES = ("AUDIO",)
FUNCTION = "generate_audio"
CATEGORY = "audio/tts"
def generate_audio(self, model_name, text, attention_mode, cfg_scale, inference_steps, seed, do_sample, temperature, top_p, top_k, quantize_llm_4bit, force_offload, **kwargs):
if not text.strip():
logger.warning("VibeVoiceTTS: Empty text provided, returning silent audio.")
return ({"waveform": torch.zeros((1, 1, 24000), dtype=torch.float32), "sample_rate": 24000},)
# Create cache key that includes attention mode
cache_key = f"{model_name}_attn_{attention_mode}_q4_{int(quantize_llm_4bit)}"
# Clean up old models when switching to a different model
if cache_key not in VIBEVOICE_PATCHER_CACHE:
# Only keep models that are currently being requested
cleanup_old_models(keep_cache_key=cache_key)
model_handler = VibeVoiceModelHandler(model_name, attention_mode, use_llm_4bit=quantize_llm_4bit)
patcher = VibeVoicePatcher(
model_handler,
attention_mode=attention_mode,
load_device=model_management.get_torch_device(),
offload_device=model_management.unet_offload_device(),
size=model_handler.size
)
VIBEVOICE_PATCHER_CACHE[cache_key] = patcher
patcher = VIBEVOICE_PATCHER_CACHE[cache_key]
model_management.load_model_gpu(patcher)
model = patcher.model.model
processor = patcher.model.processor
if model is None or processor is None:
raise RuntimeError("VibeVoice model and processor could not be loaded. Check logs for errors.")
parsed_lines_0_based, speaker_ids_1_based = parse_script_1_based(text)
if not parsed_lines_0_based:
raise ValueError("Script is empty or invalid. Use 'Speaker 1:', 'Speaker 2:', etc. format.")
full_script = "\n".join([f"Speaker {spk}: {txt}" for spk, txt in parsed_lines_0_based])
speaker_inputs = {i: kwargs.get(f"speaker_{i}_voice") for i in range(1, 5)}
voice_samples_np = [preprocess_comfy_audio(speaker_inputs[sid]) for sid in speaker_ids_1_based]
if any(v is None for v in voice_samples_np):
missing_ids = [sid for sid, v in zip(speaker_ids_1_based, voice_samples_np) if v is None]
raise ValueError(f"Script requires voices for Speakers {missing_ids}, but they were not provided.")
set_vibevoice_seed(seed)
try:
inputs = processor(
text=[full_script], voice_samples=[voice_samples_np], padding=True,
return_tensors="pt", return_attention_mask=True
)
# Validate inputs before moving to GPU
for key, value in inputs.items():
if isinstance(value, torch.Tensor):
if torch.any(torch.isnan(value)) or torch.any(torch.isinf(value)):
logger.error(f"Input tensor '{key}' contains NaN or Inf values")
raise ValueError(f"Invalid values in input tensor: {key}")
inputs = {k: v.to(model.device) if isinstance(v, torch.Tensor) else v for k, v in inputs.items()}
model.set_ddpm_inference_steps(num_steps=inference_steps)
generation_config = {'do_sample': do_sample}
if do_sample:
generation_config['temperature'] = temperature
generation_config['top_p'] = top_p
if top_k > 0:
generation_config['top_k'] = top_k
# Hardware-specific optimizations - only for eager mode
if attention_mode == "eager":
# Apply RTX 5090 / Blackwell compatibility fixes only for eager
torch.backends.cuda.matmul.allow_tf32 = False
torch.backends.cudnn.allow_tf32 = False
torch.cuda.empty_cache()
# Apply additional tensor fixes for eager mode
model = model.float()
processed_inputs = {}
for k, v in inputs.items():
if isinstance(v, torch.Tensor):
# Keep integer/boolean tensors as-is (token IDs, attention masks, etc.)
if v.dtype in [torch.int, torch.long, torch.int32, torch.int64, torch.bool, torch.uint8]:
processed_inputs[k] = v
# Keep tensors with "mask" in their name as boolean
elif "mask" in k.lower():
processed_inputs[k] = v.bool() if v.dtype != torch.bool else v
else:
# Convert float/bfloat16 tensors to float32
processed_inputs[k] = v.float()
else:
processed_inputs[k] = v
inputs = processed_inputs
with torch.no_grad():
# Create progress bar for inference steps
pbar = ProgressBar(inference_steps)
def progress_callback(step, total_steps):
pbar.update(1)
# Check for interruption from ComfyUI
if model_management.interrupt_current_processing:
raise comfy.model_management.InterruptProcessingException()
# Custom generation loop with interruption support
try:
outputs = model.generate(
**inputs, max_new_tokens=None, cfg_scale=cfg_scale,
tokenizer=processor.tokenizer, generation_config=generation_config,
verbose=False, stop_check_fn=check_for_interrupt
)
# Note: The model.generate method doesn't support progress callbacks in the current VibeVoice implementation
# But we check for interruption at the start and end of generation
pbar.update(inference_steps - pbar.current)
except RuntimeError as e:
error_msg = str(e).lower()
if "assertion" in error_msg or "cuda" in error_msg:
logger.error(f"CUDA assertion failed with {attention_mode} attention: {e}")
logger.error("This might be due to invalid input data, GPU memory issues, or incompatible attention mode.")
logger.error("Try restarting ComfyUI, using different audio files, or switching to 'eager' attention mode.")
raise e
except comfy.model_management.InterruptProcessingException:
logger.info("VibeVoice generation interrupted by user")
raise
finally:
pbar.update_absolute(inference_steps)
except comfy.model_management.InterruptProcessingException:
logger.info("VibeVoice TTS generation was cancelled")
# Return silent audio on cancellation
return ({"waveform": torch.zeros((1, 1, 24000), dtype=torch.float32), "sample_rate": 24000},)
except Exception as e:
logger.error(f"Error during VibeVoice generation with {attention_mode} attention: {e}")
if "interrupt" in str(e).lower() or "cancel" in str(e).lower():
logger.info("Generation was interrupted")
return ({"waveform": torch.zeros((1, 1, 24000), dtype=torch.float32), "sample_rate": 24000},)
raise
output_waveform = outputs.speech_outputs[0]
if output_waveform.ndim == 1: output_waveform = output_waveform.unsqueeze(0)
if output_waveform.ndim == 2: output_waveform = output_waveform.unsqueeze(0)
# Force offload model if requested
if force_offload:
logger.info(f"Force offloading VibeVoice model '{model_name}' from VRAM...")
# Force offload by unpatching the model and freeing memory
if patcher.is_loaded:
patcher.unpatch_model(unpatch_weights=True)
# Force unload all models to free memory
model_management.unload_all_models()
gc.collect()
model_management.soft_empty_cache()
logger.info("Model force offload completed")
return ({"waveform": output_waveform.detach().cpu(), "sample_rate": 24000},)
NODE_CLASS_MAPPINGS = {"VibeVoiceTTS": VibeVoiceTTSNode}
NODE_DISPLAY_NAME_MAPPINGS = {"VibeVoiceTTS": "VibeVoice TTS"}