Compare commits

..

1 Commits

Author SHA1 Message Date
0cf44914ad POC 2025-06-30 01:21:01 -07:00
37 changed files with 2628 additions and 952 deletions

View File

@ -389,15 +389,5 @@
"Failed to share page": "Failed to share page",
"Copy page": "Copy page",
"Copy page to a different space.": "Copy page to a different space.",
"Page copied successfully": "Page copied successfully",
"Find": "Find",
"Not found": "Not found",
"Previous Match (Shift+Enter)": "Previous Match (Shift+Enter)",
"Next match (Enter)": "Next match (Enter)",
"Match case (Alt+C)": "Match case (Alt+C)",
"Replace": "Replace",
"Close (Escape)": "Close (Escape)",
"Replace (Enter)": "Replace (Enter)",
"Replace all (Ctrl+Alt+Enter)": "Replace all (Ctrl+Alt+Enter)",
"Replace all": "Replace all"
"Page copied successfully": "Page copied successfully"
}

View File

@ -12,12 +12,6 @@
padding: 8px;
background: var(--mantine-color-gray-light);
cursor: pointer;
overflow-wrap: break-word;
word-wrap: break-word;
word-break: break-word;
-ms-word-break: break-word;
max-width: 100%;
box-sizing: border-box;
}
.commentEditor {

View File

@ -1,9 +0,0 @@
import { atom } from "jotai";
type SearchAndReplaceAtomType = {
isOpen: boolean;
};
export const searchAndReplaceStateAtom = atom<SearchAndReplaceAtomType>({
isOpen: false,
});

View File

@ -1,312 +0,0 @@
import {
ActionIcon,
Button,
Dialog,
Flex,
Input,
Stack,
Text,
Tooltip,
} from "@mantine/core";
import {
IconArrowNarrowDown,
IconArrowNarrowUp,
IconLetterCase,
IconReplace,
IconSearch,
IconX,
} from "@tabler/icons-react";
import { useEditor } from "@tiptap/react";
import React, { useEffect, useMemo, useRef, useState } from "react";
import { searchAndReplaceStateAtom } from "@/features/editor/components/search-and-replace/atoms/search-and-replace-state-atom.ts";
import { useAtom } from "jotai";
import { useTranslation } from "react-i18next";
import { getHotkeyHandler, useToggle } from "@mantine/hooks";
import { useLocation } from "react-router-dom";
import classes from "./search-replace.module.css";
interface PageFindDialogDialogProps {
editor: ReturnType<typeof useEditor>;
editable?: boolean;
}
function SearchAndReplaceDialog({ editor, editable = true }: PageFindDialogDialogProps) {
const { t } = useTranslation();
const [searchText, setSearchText] = useState("");
const [replaceText, setReplaceText] = useState("");
const [pageFindState, setPageFindState] = useAtom(searchAndReplaceStateAtom);
const inputRef = useRef(null);
const [replaceButton, replaceButtonToggle] = useToggle([
{ isReplaceShow: false, color: "gray" },
{ isReplaceShow: true, color: "blue" },
]);
const [caseSensitive, caseSensitiveToggle] = useToggle([
{ isCaseSensitive: false, color: "gray" },
{ isCaseSensitive: true, color: "blue" },
]);
const searchInputEvent = (event: React.ChangeEvent<HTMLInputElement>) => {
setSearchText(event.target.value);
};
const replaceInputEvent = (event: React.ChangeEvent<HTMLInputElement>) => {
setReplaceText(event.target.value);
};
const closeDialog = () => {
setSearchText("");
setReplaceText("");
setPageFindState({ isOpen: false });
// Reset replace button state when closing
if (replaceButton.isReplaceShow) {
replaceButtonToggle();
}
// Clear search term in editor
if (editor) {
editor.commands.setSearchTerm("");
}
};
const goToSelection = () => {
if (!editor) return;
const { results, resultIndex } = editor.storage.searchAndReplace;
const position: Range = results[resultIndex];
if (!position) return;
// @ts-ignore
editor.commands.setTextSelection(position);
const element = document.querySelector(".search-result-current");
if (element)
element.scrollIntoView({ behavior: "smooth", block: "center" });
editor.commands.setTextSelection(0);
};
const next = () => {
editor.commands.nextSearchResult();
goToSelection();
};
const previous = () => {
editor.commands.previousSearchResult();
goToSelection();
};
const replace = () => {
editor.commands.setReplaceTerm(replaceText);
editor.commands.replace();
goToSelection();
};
const replaceAll = () => {
editor.commands.setReplaceTerm(replaceText);
editor.commands.replaceAll();
};
useEffect(() => {
editor.commands.setSearchTerm(searchText);
editor.commands.resetIndex();
editor.commands.selectCurrentItem();
}, [searchText]);
const handleOpenEvent = (e) => {
setPageFindState({ isOpen: true });
const selectedText = editor.state.doc.textBetween(
editor.state.selection.from,
editor.state.selection.to,
);
if (selectedText !== "") {
setSearchText(selectedText);
}
inputRef.current?.focus();
inputRef.current?.select();
};
const handleCloseEvent = (e) => {
closeDialog();
};
useEffect(() => {
!pageFindState.isOpen && closeDialog();
document.addEventListener("openFindDialogFromEditor", handleOpenEvent);
document.addEventListener("closeFindDialogFromEditor", handleCloseEvent);
return () => {
document.removeEventListener("openFindDialogFromEditor", handleOpenEvent);
document.removeEventListener(
"closeFindDialogFromEditor",
handleCloseEvent,
);
};
}, [pageFindState.isOpen]);
useEffect(() => {
editor.commands.setCaseSensitive(caseSensitive.isCaseSensitive);
editor.commands.resetIndex();
goToSelection();
}, [caseSensitive]);
const resultsCount = useMemo(
() =>
searchText.trim() === ""
? ""
: editor?.storage?.searchAndReplace?.results.length > 0
? editor?.storage?.searchAndReplace?.resultIndex +
1 +
"/" +
editor?.storage?.searchAndReplace?.results.length
: t("Not found"),
[
searchText,
editor?.storage?.searchAndReplace?.resultIndex,
editor?.storage?.searchAndReplace?.results.length,
],
);
const location = useLocation();
useEffect(() => {
closeDialog();
}, [location]);
return (
<Dialog
className={classes.findDialog}
opened={pageFindState.isOpen}
size="lg"
radius="md"
w={"auto"}
position={{ top: 90, right: 50 }}
withBorder
transitionProps={{ transition: "slide-down" }}
>
<Stack gap="xs">
<Flex align="center" gap="xs">
<Input
ref={inputRef}
placeholder={t("Find")}
leftSection={<IconSearch size={16} />}
rightSection={
<Text size="xs" ta="right">
{resultsCount}
</Text>
}
rightSectionWidth="70"
rightSectionPointerEvents="all"
size="xs"
w={220}
onChange={searchInputEvent}
value={searchText}
autoFocus
onKeyDown={getHotkeyHandler([
["Enter", next],
["shift+Enter", previous],
["alt+C", caseSensitiveToggle],
//@ts-ignore
...(editable ? [["alt+R", replaceButtonToggle]] : []),
])}
/>
<ActionIcon.Group>
<Tooltip label={t("Previous match (Shift+Enter)")}>
<ActionIcon variant="subtle" color="gray" onClick={previous}>
<IconArrowNarrowUp
style={{ width: "70%", height: "70%" }}
stroke={1.5}
/>
</ActionIcon>
</Tooltip>
<Tooltip label={t("Next match (Enter)")}>
<ActionIcon variant="subtle" color="gray" onClick={next}>
<IconArrowNarrowDown
style={{ width: "70%", height: "70%" }}
stroke={1.5}
/>
</ActionIcon>
</Tooltip>
<Tooltip label={t("Match case (Alt+C)")}>
<ActionIcon
variant="subtle"
color={caseSensitive.color}
onClick={() => caseSensitiveToggle()}
>
<IconLetterCase
style={{ width: "70%", height: "70%" }}
stroke={1.5}
/>
</ActionIcon>
</Tooltip>
{editable && (
<Tooltip label={t("Replace")}>
<ActionIcon
variant="subtle"
color={replaceButton.color}
onClick={() => replaceButtonToggle()}
>
<IconReplace
style={{ width: "70%", height: "70%" }}
stroke={1.5}
/>
</ActionIcon>
</Tooltip>
)}
<Tooltip label={t("Close (Escape)")}>
<ActionIcon variant="subtle" color="gray" onClick={closeDialog}>
<IconX style={{ width: "70%", height: "70%" }} stroke={1.5} />
</ActionIcon>
</Tooltip>
</ActionIcon.Group>
</Flex>
{replaceButton.isReplaceShow && editable && (
<Flex align="center" gap="xs">
<Input
placeholder={t("Replace")}
leftSection={<IconReplace size={16} />}
rightSection={<div></div>}
rightSectionPointerEvents="all"
size="xs"
w={180}
autoFocus
onChange={replaceInputEvent}
value={replaceText}
onKeyDown={getHotkeyHandler([
["Enter", replace],
["ctrl+alt+Enter", replaceAll],
])}
/>
<ActionIcon.Group>
<Tooltip label={t("Replace (Enter)")}>
<Button
size="xs"
variant="subtle"
color="gray"
onClick={replace}
>
{t("Replace")}
</Button>
</Tooltip>
<Tooltip label={t("Replace all (Ctrl+Alt+Enter)")}>
<Button
size="xs"
variant="subtle"
color="gray"
onClick={replaceAll}
>
{t("Replace all")}
</Button>
</Tooltip>
</ActionIcon.Group>
</Flex>
)}
</Stack>
</Dialog>
);
}
export default SearchAndReplaceDialog;

View File

@ -1,10 +0,0 @@
.findDialog{
@media print {
display: none;
}
}
.findDialog div[data-position="right"].mantine-Input-section {
justify-content: right;
padding-right: 8px;
}

View File

@ -36,7 +36,6 @@ import {
Drawio,
Excalidraw,
Embed,
SearchAndReplace,
Mention,
} from "@docmost/editor-ext";
import {
@ -218,22 +217,6 @@ export const mainExtensions = [
CharacterCount.configure({
wordCounter: (text) => countWords(text),
}),
SearchAndReplace.extend({
addKeyboardShortcuts() {
return {
'Mod-f': () => {
const event = new CustomEvent("openFindDialogFromEditor", {});
document.dispatchEvent(event);
return true;
},
'Escape': () => {
const event = new CustomEvent("closeFindDialogFromEditor", {});
document.dispatchEvent(event);
return true;
},
}
},
}).configure(),
] as any;
type CollabExtensions = (provider: HocuspocusProvider, user: IUser) => any[];

View File

@ -44,7 +44,6 @@ import LinkMenu from "@/features/editor/components/link/link-menu.tsx";
import ExcalidrawMenu from "./components/excalidraw/excalidraw-menu";
import DrawioMenu from "./components/drawio/drawio-menu";
import { useCollabToken } from "@/features/auth/queries/auth-query.tsx";
import SearchAndReplaceDialog from "@/features/editor/components/search-and-replace/search-and-replace-dialog.tsx";
import { useDebouncedCallback, useDocumentVisibility } from "@mantine/hooks";
import { useIdle } from "@/hooks/use-idle.ts";
import { queryClient } from "@/main.tsx";
@ -351,8 +350,6 @@ export default function PageEditor({
<div style={{ position: "relative" }}>
<div ref={menuContainerRef}>
<EditorContent editor={editor} />
<SearchAndReplaceDialog editor={editor} editable={editable} />
{editor && editor.isEditable && (
<div>
<EditorBubbleMenu editor={editor} />

View File

@ -71,12 +71,4 @@
[data-type="details"][open] > [data-type="detailsButton"] .ProseMirror-icon{
transform: rotateZ(90deg);
}
[data-type="details"]:has(.search-result) > [data-type="detailsContainer"] > [data-type="detailsContent"]{
display: block;
}
[data-type="details"]:has(.search-result) > [data-type="detailsButton"] .ProseMirror-icon{
transform: rotateZ(90deg);
}
}
}

View File

@ -1,9 +0,0 @@
.search-result{
background: #ffff65;
color: #212529;
}
.search-result-current{
background: #ffc266 !important;
color: #212529;
}

View File

@ -9,5 +9,5 @@
@import "./media.css";
@import "./code.css";
@import "./print.css";
@import "./find.css";
@import "./mention.css";

View File

@ -10,11 +10,8 @@ import {
pageEditorAtom,
titleEditorAtom,
} from "@/features/editor/atoms/editor-atoms";
import {
updatePageData,
useUpdateTitlePageMutation,
} from "@/features/page/queries/page-query";
import { useDebouncedCallback, getHotkeyHandler } from "@mantine/hooks";
import { updatePageData, useUpdateTitlePageMutation } from "@/features/page/queries/page-query";
import { useDebouncedCallback } from "@mantine/hooks";
import { useAtom } from "jotai";
import { useQueryEmit } from "@/features/websocket/use-query-emit.ts";
import { History } from "@tiptap/extension-history";
@ -43,8 +40,7 @@ export function TitleEditor({
editable,
}: TitleEditorProps) {
const { t } = useTranslation();
const { mutateAsync: updateTitlePageMutationAsync } =
useUpdateTitlePageMutation();
const { mutateAsync: updateTitlePageMutationAsync } = useUpdateTitlePageMutation();
const pageEditor = useAtomValue(pageEditorAtom);
const [, setTitleEditor] = useAtom(titleEditorAtom);
const emit = useQueryEmit();
@ -112,12 +108,7 @@ export function TitleEditor({
spaceId: page.spaceId,
entity: ["pages"],
id: page.id,
payload: {
title: page.title,
slugId: page.slugId,
parentPageId: page.parentPageId,
icon: page.icon,
},
payload: { title: page.title, slugId: page.slugId, parentPageId: page.parentPageId, icon: page.icon },
};
if (page.title !== titleEditor.getText()) return;
@ -161,19 +152,13 @@ export function TitleEditor({
}
}, [userPageEditMode, titleEditor, editable]);
const openSearchDialog = () => {
const event = new CustomEvent("openFindDialogFromEditor", {});
document.dispatchEvent(event);
};
function handleTitleKeyDown(event: any) {
if (!titleEditor || !pageEditor || event.shiftKey) return;
// Prevent focus shift when IME composition is active
// Prevent focus shift when IME composition is active
// `keyCode === 229` is added to support Safari where `isComposing` may not be reliable
if (event.nativeEvent.isComposing || event.nativeEvent.keyCode === 229)
return;
if (event.nativeEvent.isComposing || event.nativeEvent.keyCode === 229) return;
const { key } = event;
const { $head } = titleEditor.state.selection;
@ -187,16 +172,5 @@ export function TitleEditor({
}
}
return (
<EditorContent
editor={titleEditor}
onKeyDown={(event) => {
// First handle the search hotkey
getHotkeyHandler([["mod+F", openSearchDialog]])(event);
// Then handle other key events
handleTitleKeyDown(event);
}}
/>
);
return <EditorContent editor={titleEditor} onKeyDown={handleTitleKeyDown} />;
}

View File

@ -9,7 +9,6 @@ import {
IconList,
IconMessage,
IconPrinter,
IconSearch,
IconTrash,
IconWifiOff,
} from "@tabler/icons-react";
@ -17,12 +16,7 @@ import React from "react";
import useToggleAside from "@/hooks/use-toggle-aside.tsx";
import { useAtom } from "jotai";
import { historyAtoms } from "@/features/page-history/atoms/history-atoms.ts";
import {
getHotkeyHandler,
useClipboard,
useDisclosure,
useHotkeys,
} from "@mantine/hooks";
import { useClipboard, useDisclosure } from "@mantine/hooks";
import { useParams } from "react-router-dom";
import { usePageQuery } from "@/features/page/queries/page-query.ts";
import { buildPageUrl } from "@/features/page/page.utils.ts";
@ -38,7 +32,6 @@ import {
pageEditorAtom,
yjsConnectionStatusAtom,
} from "@/features/editor/atoms/editor-atoms.ts";
import { searchAndReplaceStateAtom } from "@/features/editor/components/search-and-replace/atoms/search-and-replace-state-atom.ts";
import { formattedDate, timeAgo } from "@/lib/time.ts";
import { PageStateSegmentedControl } from "@/features/user/components/page-state-pref.tsx";
import MovePageModal from "@/features/page/components/move-page-modal.tsx";
@ -53,26 +46,6 @@ export default function PageHeaderMenu({ readOnly }: PageHeaderMenuProps) {
const toggleAside = useToggleAside();
const [yjsConnectionStatus] = useAtom(yjsConnectionStatusAtom);
useHotkeys(
[
[
"mod+F",
() => {
const event = new CustomEvent("openFindDialogFromEditor", {});
document.dispatchEvent(event);
},
],
[
"Escape",
() => {
const event = new CustomEvent("closeFindDialogFromEditor", {});
document.dispatchEvent(event);
},
],
],
[],
);
return (
<>
{yjsConnectionStatus === "disconnected" && (

View File

@ -26,9 +26,6 @@ const renderMultiSelectOption: MultiSelectProps["renderOption"] = ({
{option["type"] === "group" && <IconGroupCircle />}
<div>
<Text size="sm" lineClamp={1}>{option.label}</Text>
{option["type"] === "user" && option["email"] && (
<Text size="xs" c="dimmed" lineClamp={1}>{option["email"]}</Text>
)}
</div>
</Group>
);
@ -50,7 +47,6 @@ export function MultiMemberSelect({ onChange }: MultiMemberSelectProps) {
const userItems = suggestion?.users.map((user: IUser) => ({
value: `user-${user.id}`,
label: user.name,
email: user.email,
avatarUrl: user.avatarUrl,
type: "user",
}));

View File

@ -36,7 +36,6 @@ if (isCloud() && isPostHogEnabled) {
api_host: getPostHogHost(),
defaults: "2025-05-24",
disable_session_recording: true,
capture_pageleave: false,
});
}

View File

@ -70,6 +70,7 @@
"nanoid": "3.3.11",
"nestjs-kysely": "^1.2.0",
"nodemailer": "^7.0.3",
"openai": "^5.8.2",
"openid-client": "^5.7.1",
"passport-google-oauth20": "^2.0.0",
"passport-jwt": "^4.0.1",
@ -77,6 +78,7 @@
"pg-tsquery": "^8.4.2",
"postmark": "^4.0.5",
"react": "^18.3.1",
"redis": "^5.5.6",
"reflect-metadata": "^0.2.2",
"rxjs": "^7.8.2",
"sanitize-filename-ts": "^1.0.2",

View File

@ -156,6 +156,7 @@ export class PersistenceExtension implements Extension {
page: {
...page,
content: tiptapJson,
textContent: textContent,
lastUpdatedById: context.user.id,
},
});

View File

@ -0,0 +1,444 @@
# AI Search Integration Guide
This guide shows how to integrate the AI Search module with your existing page operations for automatic indexing.
## Event-Based Auto-Indexing
The AI Search module uses event listeners to automatically index pages when they are created, updated, or deleted.
### Emitting Events in Page Service
Update your existing `PageService` to emit events for AI search indexing:
```typescript
// In your page.service.ts
import { EventEmitter2 } from '@nestjs/event-emitter';
import { Injectable } from '@nestjs/common';
@Injectable()
export class PageService {
constructor(
private readonly eventEmitter: EventEmitter2,
// ... other dependencies
) {}
async createPage(createPageDto: CreatePageDto): Promise<Page> {
// Your existing page creation logic
const page = await this.pageRepo.create(createPageDto);
// Emit event for AI search indexing
this.eventEmitter.emit('page.created', {
pageId: page.id,
workspaceId: page.workspaceId,
spaceId: page.spaceId,
title: page.title,
textContent: page.textContent,
operation: 'create'
});
return page;
}
async updatePage(pageId: string, updatePageDto: UpdatePageDto): Promise<Page> {
// Your existing page update logic
const page = await this.pageRepo.update(pageId, updatePageDto);
// Emit event for AI search reindexing
this.eventEmitter.emit('page.updated', {
pageId: page.id,
workspaceId: page.workspaceId,
spaceId: page.spaceId,
title: page.title,
textContent: page.textContent,
operation: 'update'
});
return page;
}
async deletePage(pageId: string): Promise<void> {
// Get page info before deletion
const page = await this.pageRepo.findById(pageId);
// Your existing page deletion logic
await this.pageRepo.delete(pageId);
// Emit event for AI search cleanup
if (page) {
this.eventEmitter.emit('page.deleted', {
pageId: page.id,
workspaceId: page.workspaceId,
spaceId: page.spaceId,
operation: 'delete'
});
}
}
}
```
### Adding EventEmitter to Page Module
Make sure your `PageModule` imports the `EventEmitterModule`:
```typescript
// In your page.module.ts
import { Module } from '@nestjs/common';
import { EventEmitterModule } from '@nestjs/event-emitter';
import { PageService } from './services/page.service';
import { PageController } from './page.controller';
@Module({
imports: [
EventEmitterModule, // Add this if not already present
],
controllers: [PageController],
providers: [PageService],
exports: [PageService],
})
export class PageModule {}
```
### Bulk Operations
For bulk operations, you can emit multiple events or use a bulk reindex:
```typescript
async bulkUpdatePages(updates: BulkUpdateDto[]): Promise<Page[]> {
const updatedPages = await this.pageRepo.bulkUpdate(updates);
// Option 1: Emit individual events
for (const page of updatedPages) {
this.eventEmitter.emit('page.updated', {
pageId: page.id,
workspaceId: page.workspaceId,
spaceId: page.spaceId,
title: page.title,
textContent: page.textContent,
operation: 'update'
});
}
// Option 2: Use bulk reindex (more efficient for large batches)
// const pageIds = updatedPages.map(p => p.id);
// this.eventEmitter.emit('ai-search.bulk-reindex', {
// pageIds,
// workspaceId: updatedPages[0]?.workspaceId
// });
return updatedPages;
}
```
## Manual Integration
If you prefer manual control over indexing, you can directly use the AI search services:
```typescript
// In your page.service.ts
import { AiSearchService } from '../ai-search/services/ai-search.service';
@Injectable()
export class PageService {
constructor(
private readonly aiSearchService: AiSearchService,
// ... other dependencies
) {}
async createPageWithSearch(createPageDto: CreatePageDto): Promise<Page> {
const page = await this.pageRepo.create(createPageDto);
// Manually trigger indexing
try {
await this.aiSearchService.reindexPages({
pageIds: [page.id],
workspaceId: page.workspaceId
});
} catch (error) {
// Log error but don't fail the page creation
console.error('Failed to index page for AI search:', error);
}
return page;
}
}
```
## Frontend Integration
### Adding AI Search to Client
Create AI search service on the client side:
```typescript
// apps/client/src/features/ai-search/services/ai-search-service.ts
import api from "@/lib/api-client";
export interface AiSearchParams {
query: string;
spaceId?: string;
limit?: number;
similarity_threshold?: number;
}
export interface AiSearchResult {
id: string;
title: string;
icon: string;
similarity_score: number;
highlight: string;
space?: {
id: string;
name: string;
slug: string;
};
}
export async function semanticSearch(params: AiSearchParams): Promise<AiSearchResult[]> {
const response = await api.post<AiSearchResult[]>("/ai-search/semantic", params);
return response.data;
}
export async function hybridSearch(params: AiSearchParams): Promise<AiSearchResult[]> {
const response = await api.post<AiSearchResult[]>("/ai-search/hybrid", params);
return response.data;
}
```
### React Query Integration
```typescript
// apps/client/src/features/ai-search/queries/ai-search-query.ts
import { useQuery } from "@tanstack/react-query";
import { semanticSearch, hybridSearch, AiSearchParams } from "../services/ai-search-service";
export function useAiSemanticSearchQuery(params: AiSearchParams) {
return useQuery({
queryKey: ["ai-search", "semantic", params],
queryFn: () => semanticSearch(params),
enabled: !!params.query && params.query.length > 0,
});
}
export function useAiHybridSearchQuery(params: AiSearchParams) {
return useQuery({
queryKey: ["ai-search", "hybrid", params],
queryFn: () => hybridSearch(params),
enabled: !!params.query && params.query.length > 0,
});
}
```
### AI Search Component
```typescript
// apps/client/src/features/ai-search/components/ai-search-spotlight.tsx
import React, { useState } from "react";
import { Spotlight } from "@mantine/spotlight";
import { IconSearch, IconBrain } from "@tabler/icons-react";
import { useDebouncedValue } from "@mantine/hooks";
import { useAiSemanticSearchQuery } from "../queries/ai-search-query";
export function AiSearchSpotlight() {
const [query, setQuery] = useState("");
const [debouncedQuery] = useDebouncedValue(query, 300);
const { data: results, isLoading } = useAiSemanticSearchQuery({
query: debouncedQuery,
limit: 10,
similarity_threshold: 0.7,
});
return (
<Spotlight.Root query={query} onQueryChange={setQuery}>
<Spotlight.Search
placeholder="AI-powered semantic search..."
leftSection={<IconBrain size={20} />}
/>
<Spotlight.ActionsList>
{isLoading && <Spotlight.Empty>Searching...</Spotlight.Empty>}
{!isLoading && (!results || results.length === 0) && (
<Spotlight.Empty>No results found</Spotlight.Empty>
)}
{results?.map((result) => (
<Spotlight.Action key={result.id}>
<div>
<div>{result.title}</div>
<div style={{ fontSize: '0.8em', opacity: 0.7 }}>
Similarity: {(result.similarity_score * 100).toFixed(1)}%
</div>
{result.highlight && (
<div
style={{ fontSize: '0.8em', opacity: 0.6 }}
dangerouslySetInnerHTML={{ __html: result.highlight }}
/>
)}
</div>
</Spotlight.Action>
))}
</Spotlight.ActionsList>
</Spotlight.Root>
);
}
```
## Search Mode Toggle
Create a component that allows users to choose between traditional and AI search:
```typescript
// apps/client/src/features/search/components/search-mode-toggle.tsx
import { SegmentedControl } from "@mantine/core";
import { IconSearch, IconBrain } from "@tabler/icons-react";
interface SearchModeToggleProps {
value: 'traditional' | 'ai' | 'hybrid';
onChange: (value: 'traditional' | 'ai' | 'hybrid') => void;
}
export function SearchModeToggle({ value, onChange }: SearchModeToggleProps) {
return (
<SegmentedControl
value={value}
onChange={onChange}
data={[
{
label: 'Traditional',
value: 'traditional',
icon: IconSearch,
},
{
label: 'AI Semantic',
value: 'ai',
icon: IconBrain,
},
{
label: 'Hybrid',
value: 'hybrid',
icon: IconBrain,
},
]}
/>
);
}
```
## Performance Considerations
### Async Indexing
For better performance, consider making indexing asynchronous:
```typescript
// Use a queue for heavy indexing operations
import { InjectQueue } from '@nestjs/bullmq';
import { Queue } from 'bullmq';
@Injectable()
export class PageService {
constructor(
@InjectQueue('ai-search') private aiSearchQueue: Queue,
) {}
async createPage(createPageDto: CreatePageDto): Promise<Page> {
const page = await this.pageRepo.create(createPageDto);
// Queue indexing job instead of doing it synchronously
await this.aiSearchQueue.add('index-page', {
pageId: page.id,
workspaceId: page.workspaceId,
spaceId: page.spaceId,
title: page.title,
textContent: page.textContent,
});
return page;
}
}
```
### Conditional Indexing
Only index pages when AI search is configured:
```typescript
async createPage(createPageDto: CreatePageDto): Promise<Page> {
const page = await this.pageRepo.create(createPageDto);
// Check if AI search is enabled before emitting events
if (this.embeddingService.isConfigured()) {
this.eventEmitter.emit('page.created', {
pageId: page.id,
workspaceId: page.workspaceId,
spaceId: page.spaceId,
title: page.title,
textContent: page.textContent,
operation: 'create'
});
}
return page;
}
```
## Testing Integration
### Unit Tests
```typescript
// page.service.spec.ts
import { EventEmitter2 } from '@nestjs/event-emitter';
describe('PageService', () => {
let service: PageService;
let eventEmitter: EventEmitter2;
beforeEach(async () => {
const module = await Test.createTestingModule({
providers: [
PageService,
{
provide: EventEmitter2,
useValue: {
emit: jest.fn(),
},
},
],
}).compile();
service = module.get<PageService>(PageService);
eventEmitter = module.get<EventEmitter2>(EventEmitter2);
});
it('should emit page.created event when creating page', async () => {
const createPageDto = { title: 'Test Page', content: 'Test content' };
await service.createPage(createPageDto);
expect(eventEmitter.emit).toHaveBeenCalledWith('page.created',
expect.objectContaining({
operation: 'create',
title: 'Test Page',
})
);
});
});
```
## Monitoring and Analytics
### Track Search Usage
```typescript
// Add search analytics
this.eventEmitter.emit('ai-search.query', {
query: searchParams.query,
userId: opts.userId,
workspaceId: opts.workspaceId,
searchType: 'semantic',
resultCount: results.length,
executionTime: Date.now() - startTime,
});
```
This integration approach ensures that your AI search stays in sync with your content while maintaining good performance and error handling.

View File

@ -0,0 +1,201 @@
# AI Search Module
A comprehensive AI-powered semantic search module for Docmost that integrates with Redis vector database using the official **node-redis** client to provide intelligent search capabilities following Redis vector search specifications.
## Features
- **Semantic Search**: Find content based on meaning rather than exact keywords using vector embeddings
- **Hybrid Search**: Combines both semantic and traditional full-text search with configurable weights
- **Redis Vector Database**: Uses Redis with RediSearch module for efficient vector operations via node-redis client
- **HNSW Indexing**: Hierarchical Navigable Small World algorithm for fast approximate nearest neighbor search
- **Auto-indexing**: Automatically indexes pages when they are created or updated
- **OpenAI-Compatible**: Supports OpenAI and OpenAI-compatible embedding providers
- **Batch Operations**: Efficient batch processing for large-scale indexing
- **Permission-aware**: Respects user permissions and workspace access
- **COSINE Distance**: Uses cosine distance metric for semantic similarity
## Architecture
```
ai-search/
├── ai-search.controller.ts # REST API endpoints
├── ai-search.module.ts # Module configuration
├── dto/
│ └── semantic-search.dto.ts # Request/response DTOs
├── services/
│ ├── ai-search.service.ts # Main search logic
│ ├── embedding.service.ts # Text embedding generation
│ ├── redis-vector.service.ts # Redis vector operations (node-redis)
│ └── vector.service.ts # Vector math utilities
├── listeners/
│ └── page-update.listener.ts # Auto-indexing on page changes
├── constants.ts # Configuration constants
├── README.md # This file
├── SETUP.md # Setup guide
└── INTEGRATION.md # Integration examples
```
## Configuration
Add these environment variables to your `.env` file:
```env
# Redis Vector Database (using node-redis client)
REDIS_VECTOR_HOST=localhost
REDIS_VECTOR_PORT=6379
REDIS_VECTOR_PASSWORD=your_redis_password
REDIS_VECTOR_DB=0
REDIS_VECTOR_INDEX=docmost_pages
# AI Embedding Configuration (OpenAI-compatible)
AI_EMBEDDING_MODEL=text-embedding-3-small
AI_EMBEDDING_DIMENSIONS=1536
AI_EMBEDDING_BASE_URL=https://api.openai.com/v1/embeddings # Optional: for custom providers
# OpenAI API Key (or compatible provider key)
OPENAI_API_KEY=your_openai_api_key
```
## Redis Vector Search Implementation
This implementation follows the official [Redis Vector Search specifications](https://redis.io/docs/latest/develop/interact/search-and-query/query/vector-search/) and uses the [node-redis client](https://redis.io/docs/latest/develop/clients/nodejs/vecsearch/) for proper integration.
### Key Features:
- **HNSW Algorithm**: Uses Hierarchical Navigable Small World for fast vector indexing
- **COSINE Distance**: Semantic similarity using cosine distance metric
- **KNN Queries**: K-nearest neighbors search with `*=>[KNN k @embedding $vector AS distance]`
- **Hash Storage**: Vectors stored as Redis hash documents with binary embedding data
- **node-redis Client**: Official Redis client with full vector search support
### Vector Index Schema:
```typescript
{
page_id: SchemaFieldTypes.TEXT, // Sortable page identifier
workspace_id: SchemaFieldTypes.TEXT, // Sortable workspace filter
space_id: SchemaFieldTypes.TEXT, // Space filter
title: SchemaFieldTypes.TEXT, // Page title
embedding: { // Vector field
type: SchemaFieldTypes.VECTOR,
ALGORITHM: VectorAlgorithms.HNSW, // HNSW indexing
TYPE: 'FLOAT32', // 32-bit floats
DIM: 1536, // Embedding dimensions
DISTANCE_METRIC: 'COSINE', // Cosine similarity
},
indexed_at: SchemaFieldTypes.NUMERIC // Indexing timestamp
}
```
## API Endpoints
### Semantic Search
```http
POST /ai-search/semantic
Content-Type: application/json
{
"query": "machine learning algorithms",
"spaceId": "optional-space-id",
"limit": 20,
"similarity_threshold": 0.7
}
```
### Hybrid Search
```http
POST /ai-search/hybrid
Content-Type: application/json
{
"query": "neural networks",
"spaceId": "optional-space-id",
"limit": 20
}
```
### Reindex Pages
```http
POST /ai-search/reindex
Content-Type: application/json
{
"spaceId": "optional-space-id",
"pageIds": ["page-id-1", "page-id-2"]
}
```
## Usage Examples
### Basic Semantic Search
```typescript
import { AiSearchService } from './ai-search.service';
// Search for pages semantically using vector similarity
const results = await aiSearchService.semanticSearch(
'artificial intelligence concepts',
{ limit: 10, similarity_threshold: 0.8 },
{ userId: 'user-id', workspaceId: 'workspace-id' }
);
```
### Hybrid Search with Weighted Scoring
```typescript
// Combine semantic (70%) and text search (30%)
const results = await aiSearchService.hybridSearch(
'machine learning tutorial',
{ spaceId: 'space-id', limit: 15 },
{ userId: 'user-id', workspaceId: 'workspace-id' }
);
```
## Dependencies
The module uses the official **node-redis** package for Redis integration:
```json
{
"redis": "^4.7.0"
}
```
Install with pnpm:
```bash
pnpm install
```
## Performance Optimizations
### Vector Search Performance
- **HNSW Algorithm**: Provides O(log n) search complexity
- **COSINE Distance**: Efficient for normalized embeddings
- **Batch Operations**: Multi-command execution for bulk indexing
- **Connection Pooling**: Persistent Redis connections
### Memory Efficiency
- **Float32 Vectors**: Reduced memory usage vs Float64
- **TTL Expiration**: Automatic cleanup of old vectors (30 days)
- **Prefix-based Storage**: Organized key structure
## Vector Storage Format
Vectors are stored as Redis hash documents:
```
Key: vector:{workspaceId}:{pageId}
Fields:
page_id: "page-uuid"
workspace_id: "workspace-uuid"
space_id: "space-uuid"
title: "Page Title"
embedding: Buffer<Float32Array> // Binary vector data
indexed_at: "1234567890"
```
## Error Handling
The module includes comprehensive error handling:
- **Connection Resilience**: Automatic reconnection on Redis failures
- **Embedding Retries**: Exponential backoff for API failures
- **Vector Validation**: Dimension and format checking
- **Graceful Degradation**: Fallback to text search on vector errors
This implementation provides production-ready vector search capabilities that scale with your content while maintaining excellent search quality and performance.

View File

@ -0,0 +1,224 @@
# AI Search Setup Guide
This guide will help you set up the AI Search module with Redis vector database for Docmost.
## Prerequisites
1. **Redis with RediSearch**: You need Redis with the RediSearch module for vector operations
2. **OpenAI API Key**: For embedding generation (or alternative provider)
3. **Node.js Dependencies**: The required packages are already added to package.json
## Step 1: Install Redis with RediSearch
### Option A: Using Docker (Recommended)
```bash
# Using Redis Stack (includes RediSearch and vector capabilities)
docker run -d --name redis-stack \
-p 6379:6379 \
-v redis-data:/data \
redis/redis-stack-server:latest
# Or using Redis Enterprise with RediSearch
docker run -d --name redis-vector \
-p 6379:6379 \
-v redis-data:/data \
redislabs/redisearch:latest
```
### Option B: Manual Installation
1. Install Redis from source with RediSearch module
2. Or use Redis Cloud with RediSearch enabled
## Step 2: Configure Environment Variables
Add these variables to your `.env` file:
```env
# ===== Redis Vector Database Configuration =====
REDIS_VECTOR_HOST=localhost
REDIS_VECTOR_PORT=6379
REDIS_VECTOR_PASSWORD=your_redis_password_here
REDIS_VECTOR_DB=0
REDIS_VECTOR_INDEX=docmost_pages
# ===== AI Embedding Configuration (OpenAI-compatible) =====
AI_EMBEDDING_MODEL=text-embedding-3-small
AI_EMBEDDING_DIMENSIONS=1536
AI_EMBEDDING_BASE_URL=https://api.openai.com/v1/embeddings # Optional: for custom providers
# ===== OpenAI API Key (or compatible provider key) =====
OPENAI_API_KEY=your_openai_api_key_here
```
## Step 3: Custom OpenAI-Compatible Providers
You can use any provider that follows the OpenAI embeddings API specification by setting the `AI_EMBEDDING_BASE_URL`:
### Examples:
**Azure OpenAI:**
```env
AI_EMBEDDING_BASE_URL=https://your-resource.openai.azure.com/openai/deployments/your-deployment/embeddings?api-version=2023-05-15
OPENAI_API_KEY=your_azure_openai_key
```
**Ollama (local):**
```env
AI_EMBEDDING_BASE_URL=http://localhost:11434/v1/embeddings
AI_EMBEDDING_MODEL=nomic-embed-text
AI_EMBEDDING_DIMENSIONS=768
```
**Other compatible providers:**
- Together AI
- Anyscale
- OpenRouter
- Any provider implementing OpenAI's embeddings API
## Step 4: Install Dependencies
The required dependencies are already in package.json. Run:
```bash
pnpm install
```
## Step 5: Initialize the Vector Index
The vector index will be created automatically when the service starts. You can also manually trigger reindexing:
```bash
# Using the API endpoint
curl -X POST http://localhost:3000/ai-search/reindex \
-H "Content-Type: application/json" \
-H "Authorization: Bearer YOUR_JWT_TOKEN" \
-d '{"workspaceId": "your-workspace-id"}'
```
## Step 6: Test the Setup
### Test Semantic Search
```bash
curl -X POST http://localhost:3000/ai-search/semantic \
-H "Content-Type: application/json" \
-H "Authorization: Bearer YOUR_JWT_TOKEN" \
-d '{
"query": "machine learning algorithms",
"limit": 10,
"similarity_threshold": 0.7
}'
```
### Test Hybrid Search
```bash
curl -X POST http://localhost:3000/ai-search/hybrid \
-H "Content-Type: application/json" \
-H "Authorization: Bearer YOUR_JWT_TOKEN" \
-d '{
"query": "neural networks",
"limit": 10
}'
```
## Step 7: Monitor the Setup
### Check Redis Connection
```bash
redis-cli ping
# Should return PONG
```
### Check RediSearch Module
```bash
redis-cli MODULE LIST
# Should show RediSearch in the list
```
### Check Index Status
```bash
redis-cli FT.INFO docmost_pages
# Should show index information
```
## Troubleshooting
### Common Issues
1. **Redis Connection Error**
- Check if Redis is running: `docker ps` or `redis-cli ping`
- Verify connection details in .env file
- Check firewall/network settings
2. **RediSearch Module Not Found**
- Ensure you're using Redis Stack or Redis with RediSearch
- Check module is loaded: `redis-cli MODULE LIST`
3. **OpenAI API Errors**
- Verify API key is correct and has sufficient credits
- Check API usage limits and quotas
- Ensure model name is correct
4. **Embedding Generation Fails**
- Check text length (max 8000 characters by default)
- Verify network connectivity to embedding provider
- Check API rate limits
5. **Search Returns No Results**
- Ensure pages are indexed: check logs for indexing errors
- Verify similarity threshold (try lowering it)
- Check user permissions for searched content
### Debug Logging
Enable debug logging by setting:
```env
LOG_LEVEL=debug
```
### Performance Tuning
1. **Batch Size**: Adjust based on your API rate limits
```env
AI_SEARCH_BATCH_SIZE=50 # Lower for rate-limited APIs
```
2. **Similarity Threshold**: Balance precision vs recall
```env
AI_SEARCH_SIMILARITY_THRESHOLD=0.6 # Lower = more results
```
3. **Redis Memory**: Monitor memory usage as index grows
```bash
redis-cli INFO memory
```
## Production Deployment
### Redis Configuration
- Use Redis Cluster for high availability
- Set up proper backup and persistence
- Monitor memory usage and performance
- Configure appropriate TTL for vectors
### Security
- Use strong Redis passwords
- Enable TLS for Redis connections
- Secure API keys in environment variables
- Implement proper rate limiting
### Monitoring
- Set up alerts for Redis health
- Monitor embedding API usage and costs
- Track search performance metrics
- Log search queries for analysis
## Next Steps
1. **Auto-indexing**: Pages are automatically indexed on create/update
2. **Client Integration**: Add AI search to your frontend
3. **Custom Scoring**: Implement custom ranking algorithms
4. **Analytics**: Track search usage and effectiveness
For more detailed information, see the main README.md file.

View File

@ -0,0 +1,38 @@
import { Test, TestingModule } from '@nestjs/testing';
import { AiSearchController } from './ai-search.controller';
import { AiSearchService } from './services/ai-search.service';
import SpaceAbilityFactory from '../casl/abilities/space-ability.factory';
describe('AiSearchController', () => {
let controller: AiSearchController;
let service: AiSearchService;
beforeEach(async () => {
const module: TestingModule = await Test.createTestingModule({
controllers: [AiSearchController],
providers: [
{
provide: AiSearchService,
useValue: {
semanticSearch: jest.fn(),
hybridSearch: jest.fn(),
reindexPages: jest.fn(),
},
},
{
provide: SpaceAbilityFactory,
useValue: {
createForUser: jest.fn(),
},
},
],
}).compile();
controller = module.get<AiSearchController>(AiSearchController);
service = module.get<AiSearchService>(AiSearchService);
});
it('should be defined', () => {
expect(controller).toBeDefined();
});
});

View File

@ -0,0 +1,123 @@
import {
Controller,
Post,
Body,
UseGuards,
HttpCode,
HttpStatus,
BadRequestException,
ForbiddenException,
} from '@nestjs/common';
import { User } from '@docmost/db/types/entity.types';
import { Workspace } from '@docmost/db/types/entity.types';
import { AiSearchService } from './services/ai-search.service';
import { SemanticSearchDto, SemanticSearchShareDto } from './dto/semantic-search.dto';
import { JwtAuthGuard } from '../../common/guards/jwt-auth.guard';
import SpaceAbilityFactory from '../casl/abilities/space-ability.factory';
import { AuthUser } from '../../common/decorators/auth-user.decorator';
import { AuthWorkspace } from '../../common/decorators/auth-workspace.decorator';
import { SpaceCaslAction, SpaceCaslSubject } from '../casl/interfaces/space-ability.type';
import { Public } from '../../common/decorators/public.decorator';
@UseGuards(JwtAuthGuard)
@Controller('ai-search')
export class AiSearchController {
constructor(
private readonly aiSearchService: AiSearchService,
private readonly spaceAbility: SpaceAbilityFactory,
) {}
@HttpCode(HttpStatus.OK)
@Post('semantic')
async semanticSearch(
@Body() searchDto: SemanticSearchDto,
@AuthUser() user: User,
@AuthWorkspace() workspace: Workspace,
) {
delete searchDto.shareId;
if (searchDto.spaceId) {
const ability = await this.spaceAbility.createForUser(
user,
searchDto.spaceId,
);
if (ability.cannot(SpaceCaslAction.Read, SpaceCaslSubject.Page)) {
throw new ForbiddenException();
}
}
return this.aiSearchService.semanticSearch(searchDto.query, searchDto, {
userId: user.id,
workspaceId: workspace.id,
});
}
@HttpCode(HttpStatus.OK)
@Post('hybrid')
async hybridSearch(
@Body() searchDto: SemanticSearchDto,
@AuthUser() user: User,
@AuthWorkspace() workspace: Workspace,
) {
delete searchDto.shareId;
if (searchDto.spaceId) {
const ability = await this.spaceAbility.createForUser(
user,
searchDto.spaceId,
);
if (ability.cannot(SpaceCaslAction.Read, SpaceCaslSubject.Page)) {
throw new ForbiddenException();
}
}
return this.aiSearchService.hybridSearch(searchDto.query, searchDto, {
userId: user.id,
workspaceId: workspace.id,
});
}
@Public()
@HttpCode(HttpStatus.OK)
@Post('semantic-share')
async semanticSearchShare(
@Body() searchDto: SemanticSearchShareDto,
@AuthWorkspace() workspace: Workspace,
) {
delete searchDto.spaceId;
if (!searchDto.shareId) {
throw new BadRequestException('shareId is required');
}
return this.aiSearchService.semanticSearch(searchDto.query, searchDto, {
workspaceId: workspace.id,
});
}
@HttpCode(HttpStatus.OK)
@Post('reindex')
async reindexPages(
@Body() body: { spaceId?: string; pageIds?: string[] },
@AuthUser() user: User,
@AuthWorkspace() workspace: Workspace,
) {
if (body.spaceId) {
const ability = await this.spaceAbility.createForUser(
user,
body.spaceId,
);
if (ability.cannot(SpaceCaslAction.Manage, SpaceCaslSubject.Page)) {
throw new ForbiddenException();
}
}
return this.aiSearchService.reindexPages({
workspaceId: workspace.id,
spaceId: body.spaceId,
pageIds: body.pageIds,
});
}
}

View File

@ -0,0 +1,22 @@
import { Module } from '@nestjs/common';
import { ConfigModule } from '@nestjs/config';
import { AiSearchController } from './ai-search.controller';
import { AiSearchService } from './services/ai-search.service';
import { VectorService } from './services/vector.service';
import { EmbeddingService } from './services/embedding.service';
import { RedisVectorService } from './services/redis-vector.service';
import { PageUpdateListener } from './listeners/page-update.listener';
@Module({
imports: [ConfigModule],
controllers: [AiSearchController],
providers: [
AiSearchService,
VectorService,
EmbeddingService,
RedisVectorService,
PageUpdateListener,
],
exports: [AiSearchService, VectorService, EmbeddingService, RedisVectorService],
})
export class AiSearchModule {}

View File

@ -0,0 +1,50 @@
export const AI_SEARCH_CONFIG = {
// Default similarity thresholds
DEFAULT_SIMILARITY_THRESHOLD: 0.7,
HIGH_SIMILARITY_THRESHOLD: 0.85,
LOW_SIMILARITY_THRESHOLD: 0.6,
// Search limits
MAX_SEARCH_LIMIT: 100,
DEFAULT_SEARCH_LIMIT: 20,
MIN_SEARCH_LIMIT: 1,
// Embedding configuration
DEFAULT_EMBEDDING_DIMENSIONS: 1536,
MAX_TEXT_LENGTH: 8000,
// Indexing configuration
DEFAULT_BATCH_SIZE: 100,
INDEX_TTL_DAYS: 30,
// Hybrid search weights
SEMANTIC_WEIGHT: 0.7,
TEXT_WEIGHT: 0.3,
// Redis configuration
REDIS_KEY_PREFIX: 'docmost:ai-search',
VECTOR_KEY_PREFIX: 'vector',
METADATA_KEY_PREFIX: 'metadata',
// Retry configuration
MAX_RETRIES: 3,
RETRY_DELAY_MS: 1000,
// OpenAI configuration
OPENAI_BATCH_SIZE: 100,
} as const;
export const EMBEDDING_MODELS = {
OPENAI: {
'text-embedding-3-small': 1536,
'text-embedding-3-large': 3072,
'text-embedding-ada-002': 1536,
},
} as const;
export const SEARCH_EVENTS = {
PAGE_CREATED: 'page.created',
PAGE_UPDATED: 'page.updated',
PAGE_DELETED: 'page.deleted',
BULK_REINDEX: 'ai-search.bulk-reindex',
} as const;

View File

@ -0,0 +1,103 @@
import {
IsNotEmpty,
IsString,
IsOptional,
IsNumber,
Min,
Max,
IsArray,
IsBoolean,
} from 'class-validator';
export class SemanticSearchDto {
@IsNotEmpty()
@IsString()
query: string;
@IsOptional()
@IsString()
spaceId?: string;
@IsOptional()
@IsString()
shareId?: string;
@IsOptional()
@IsString()
creatorId?: string;
@IsOptional()
@IsNumber()
@Min(1)
@Max(100)
limit?: number = 20;
@IsOptional()
@IsNumber()
@Min(0)
offset?: number = 0;
@IsOptional()
@IsNumber()
@Min(0)
@Max(1)
similarity_threshold?: number = 0.7;
@IsOptional()
@IsBoolean()
include_highlights?: boolean = true;
@IsOptional()
@IsArray()
@IsString({ each: true })
filters?: string[];
}
export class SemanticSearchShareDto extends SemanticSearchDto {
@IsNotEmpty()
@IsString()
shareId: string;
@IsOptional()
@IsString()
spaceId?: string;
}
export class SemanticSearchResponseDto {
id: string;
title: string;
icon: string;
parentPageId: string;
creatorId: string;
similarity_score: number;
semantic_rank: number;
highlight: string;
createdAt: Date;
updatedAt: Date;
space?: {
id: string;
name: string;
slug: string;
};
}
export class HybridSearchResponseDto extends SemanticSearchResponseDto {
text_rank?: number;
combined_score: number;
search_type: 'semantic' | 'text' | 'hybrid';
}
export class ReindexDto {
@IsOptional()
@IsString()
spaceId?: string;
@IsOptional()
@IsArray()
@IsString({ each: true })
pageIds?: string[];
@IsNotEmpty()
@IsString()
workspaceId: string;
}

View File

@ -0,0 +1,88 @@
import { Injectable, Logger } from '@nestjs/common';
import { OnEvent } from '@nestjs/event-emitter';
import { AiSearchService } from '../services/ai-search.service';
import { EmbeddingService } from '../services/embedding.service';
import { RedisVectorService } from '../services/redis-vector.service';
import { Page } from '@docmost/db/types/entity.types';
import { UpdatedPageEvent } from '../../../collaboration/listeners/history.listener';
export interface PageUpdateEvent {
pageId: string;
workspaceId: string;
spaceId: string;
title?: string;
textContent?: string;
operation: 'create' | 'update' | 'delete';
}
@Injectable()
export class PageUpdateListener {
private readonly logger = new Logger(PageUpdateListener.name);
constructor(
private readonly aiSearchService: AiSearchService,
private readonly embeddingService: EmbeddingService,
private readonly redisVectorService: RedisVectorService,
) {}
@OnEvent('page.created')
async handlePageCreated(event: Page) {
await this.indexPage(event);
}
@OnEvent('collab.page.updated')
async handlePageUpdated(event: UpdatedPageEvent) {
await this.indexPage(event.page);
}
@OnEvent('page.deleted')
async handlePageDeleted(event: Page) {
try {
await this.redisVectorService.deletePage(event.id, event.workspaceId);
this.logger.debug(`Removed page ${event.id} from vector index`);
} catch (error) {
this.logger.error(
`Failed to remove page ${event.id} from vector index:`,
error,
);
}
}
private async indexPage(event: Page) {
try {
const content = `${event.title || ''} ${event.textContent || ''}`.trim();
if (!content) {
this.logger.debug(
`Skipping indexing for page ${event.id} - no content`,
);
return;
}
if (!this.embeddingService.isConfigured()) {
this.logger.debug(
'Embedding service not configured, skipping indexing',
);
return;
}
const embedding = await this.embeddingService.generateEmbedding(content);
console.log('embedding', embedding);
await this.redisVectorService.indexPage({
pageId: event.id,
embedding,
metadata: {
title: event.title,
workspaceId: event.workspaceId,
spaceId: event.spaceId,
},
});
this.logger.debug(`Indexed page ${event.id} for AI search`);
} catch (error) {
this.logger.error(`Failed to index page ${event.id}:`, error);
}
}
}

View File

@ -0,0 +1,438 @@
import { Injectable, Logger } from '@nestjs/common';
import { InjectKysely } from 'nestjs-kysely';
import { KyselyDB } from '@docmost/db/types/kysely.types';
import { sql } from 'kysely';
import { PageRepo } from '@docmost/db/repos/page/page.repo';
import { SpaceMemberRepo } from '@docmost/db/repos/space/space-member.repo';
import { ShareRepo } from '@docmost/db/repos/share/share.repo';
import { VectorService } from './vector.service';
import { EmbeddingService } from './embedding.service';
import { RedisVectorService } from './redis-vector.service';
import {
SemanticSearchDto,
SemanticSearchResponseDto,
HybridSearchResponseDto,
ReindexDto,
} from '../dto/semantic-search.dto';
// eslint-disable-next-line @typescript-eslint/no-require-imports
const tsquery = require('pg-tsquery')();
@Injectable()
export class AiSearchService {
private readonly logger = new Logger(AiSearchService.name);
constructor(
@InjectKysely() private readonly db: KyselyDB,
private readonly pageRepo: PageRepo,
private readonly shareRepo: ShareRepo,
private readonly spaceMemberRepo: SpaceMemberRepo,
private readonly vectorService: VectorService,
private readonly embeddingService: EmbeddingService,
private readonly redisVectorService: RedisVectorService,
) {}
async semanticSearch(
query: string,
searchParams: SemanticSearchDto,
opts: {
userId?: string;
workspaceId: string;
},
): Promise<SemanticSearchResponseDto[]> {
if (query.length < 1) {
return [];
}
try {
// Generate embedding for the query
const queryEmbedding =
await this.embeddingService.generateEmbedding(query);
// Get page IDs that user has access to
const accessiblePageIds = await this.getAccessiblePageIds(
searchParams,
opts,
);
console.log('accessible', accessiblePageIds);
if (accessiblePageIds.length === 0) {
return [];
}
// Perform vector search
const vectorResults = await this.redisVectorService.searchSimilar(
queryEmbedding,
{
limit: searchParams.limit || 20,
offset: searchParams.offset || 0,
threshold: searchParams.similarity_threshold || 0.7,
filters: {
workspace_id: opts.workspaceId,
page_ids: accessiblePageIds,
},
},
);
console.log('vectorResults', vectorResults);
if (vectorResults.length === 0) {
return [];
}
// Get page details from database
const pageIds = vectorResults.map((result) => result.pageId);
const pages = await this.getPageDetails(pageIds, searchParams);
// Combine vector results with page details
const results = this.combineVectorResultsWithPages(
vectorResults,
pages,
query,
searchParams.include_highlights,
);
return results;
} catch (error) {
this.logger.error(`Semantic search failed: ${error?.['message']}`, error);
throw error;
}
}
async hybridSearch(
query: string,
searchParams: SemanticSearchDto,
opts: {
userId?: string;
workspaceId: string;
},
): Promise<HybridSearchResponseDto[]> {
if (query.length < 1) {
return [];
}
try {
// Run both semantic and text search in parallel
const [semanticResults, textResults] = await Promise.all([
this.semanticSearch(query, searchParams, opts),
this.performTextSearch(query, searchParams, opts),
]);
// Combine and rank results
const hybridResults = this.combineHybridResults(
semanticResults,
textResults,
query,
);
return hybridResults;
} catch (error) {
this.logger.error(`Hybrid search failed: ${error?.['message']}`, error);
throw error;
}
}
async reindexPages(
params: ReindexDto,
): Promise<{ indexed: number; errors?: string[] }> {
try {
let query = this.db
.selectFrom('pages')
.select(['id', 'title', 'textContent'])
.where('workspaceId', '=', params.workspaceId)
.where('deletedAt', 'is', null);
if (params.spaceId) {
query = query.where('spaceId', '=', params.spaceId);
}
if (params.pageIds && params.pageIds.length > 0) {
query = query.where('id', 'in', params.pageIds);
}
const pages = await query.execute();
const results = await Promise.allSettled(
pages.map(async (page) => {
const content =
`${page.title || ''} ${page.textContent || ''}`.trim();
if (!content) return null;
const embedding =
await this.embeddingService.generateEmbedding(content);
await this.redisVectorService.indexPage({
pageId: page.id,
embedding,
metadata: {
title: page.title,
workspaceId: params.workspaceId,
},
});
return page.id;
}),
);
const indexed = results.filter(
(r) => r.status === 'fulfilled' && r.value,
).length;
const errors = results
.filter((r) => r.status === 'rejected')
.map((r) => r.reason.message);
this.logger.log(
`Reindexed ${indexed} pages for workspace ${params.workspaceId}`,
);
return { indexed, errors: errors.length > 0 ? errors : undefined };
} catch (error) {
this.logger.error(`Reindexing failed: ${error?.['message']}`, error);
throw error;
}
}
private async getAccessiblePageIds(
searchParams: SemanticSearchDto,
opts: { userId?: string; workspaceId: string },
): Promise<string[]> {
if (searchParams.shareId) {
// Handle shared pages
const share = await this.shareRepo.findById(searchParams.shareId);
if (!share || share.workspaceId !== opts.workspaceId) {
return [];
}
const pageIdsToSearch = [];
if (share.includeSubPages) {
const pageList = await this.pageRepo.getPageAndDescendants(
share.pageId,
{ includeContent: false },
);
pageIdsToSearch.push(...pageList.map((page) => page.id));
} else {
pageIdsToSearch.push(share.pageId);
}
return pageIdsToSearch;
}
if (searchParams.spaceId) {
// Get pages from specific space
const pages = await this.db
.selectFrom('pages')
.select('id')
.where('spaceId', '=', searchParams.spaceId)
.where('workspaceId', '=', opts.workspaceId)
.where('deletedAt', 'is', null)
.execute();
return pages.map((p) => p.id);
}
if (opts.userId) {
// Get pages from user's accessible spaces
const userSpaceIds = await this.spaceMemberRepo.getUserSpaceIds(
opts.userId,
);
if (userSpaceIds.length === 0) {
return [];
}
const pages = await this.db
.selectFrom('pages')
.select('id')
.where('spaceId', 'in', userSpaceIds)
.where('workspaceId', '=', opts.workspaceId)
.where('deletedAt', 'is', null)
.execute();
return pages.map((p) => p.id);
}
return [];
}
private async getPageDetails(
pageIds: string[],
searchParams: SemanticSearchDto,
) {
let query = this.db
.selectFrom('pages')
.select([
'id',
'slugId',
'title',
'icon',
'parentPageId',
'creatorId',
'createdAt',
'updatedAt',
'textContent',
]);
if (!searchParams.shareId) {
query = query.select((eb) => this.pageRepo.withSpace(eb));
}
const pages = await query
.where('id', 'in', pageIds)
.where('deletedAt', 'is', null)
.execute();
return pages;
}
private combineVectorResultsWithPages(
vectorResults: any[],
pages: any[],
query: string,
includeHighlights: boolean = true,
): SemanticSearchResponseDto[] {
const pageMap = new Map(pages.map((p) => [p.id, p]));
return vectorResults
.map((result, index) => {
const page = pageMap.get(result.pageId);
if (!page) return null;
let highlight = '';
if (includeHighlights && page.textContent) {
highlight = this.generateHighlight(page.textContent, query);
}
return {
id: page.id,
title: page.title,
icon: page.icon,
parentPageId: page.parentPageId,
creatorId: page.creatorId,
similarity_score: result.score,
semantic_rank: index + 1,
highlight,
createdAt: page.createdAt,
updatedAt: page.updatedAt,
space: page.space
? {
id: page.space.id,
name: page.space.name,
slug: page.space.slug,
}
: undefined,
};
})
.filter(Boolean);
}
private async performTextSearch(
query: string,
searchParams: SemanticSearchDto,
opts: { userId?: string; workspaceId: string },
) {
const searchQuery = tsquery(query.trim() + '*');
const accessiblePageIds = await this.getAccessiblePageIds(
searchParams,
opts,
);
if (accessiblePageIds.length === 0) {
return [];
}
const results = await this.db
.selectFrom('pages')
.select([
'id',
'slugId',
'title',
'icon',
'parentPageId',
'creatorId',
'createdAt',
'updatedAt',
sql<number>`ts_rank(tsv, to_tsquery(${searchQuery}))`.as('text_rank'),
sql<string>`ts_headline('english', text_content, to_tsquery(${searchQuery}),'MinWords=9, MaxWords=10, MaxFragments=3')`.as(
'highlight',
),
])
.where('tsv', '@@', sql<string>`to_tsquery(${searchQuery})`)
.where('id', 'in', accessiblePageIds)
.orderBy('text_rank', 'desc')
.limit(searchParams.limit || 20)
.execute();
return results.map((result) => ({
...result,
text_rank: result.text_rank,
search_type: 'text' as const,
}));
}
private combineHybridResults(
semanticResults: SemanticSearchResponseDto[],
textResults: any[],
query: string,
): HybridSearchResponseDto[] {
const combinedMap = new Map<string, HybridSearchResponseDto>();
// Add semantic results
semanticResults.forEach((result, index) => {
combinedMap.set(result.id, {
...result,
text_rank: undefined,
combined_score: result.similarity_score * 0.7, // Weight semantic results
search_type: 'semantic',
});
});
// Add text results or combine with existing
textResults.forEach((result, index) => {
const existing = combinedMap.get(result.id);
if (existing) {
// Combine scores
existing.combined_score =
existing.similarity_score * 0.7 + result.text_rank * 0.3;
existing.text_rank = result.text_rank;
existing.search_type = 'hybrid';
} else {
combinedMap.set(result.id, {
id: result.id,
title: result.title,
icon: result.icon,
parentPageId: result.parentPageId,
creatorId: result.creatorId,
similarity_score: 0,
semantic_rank: 0,
text_rank: result.text_rank,
combined_score: result.text_rank * 0.3,
highlight: result.highlight,
createdAt: result.createdAt,
updatedAt: result.updatedAt,
search_type: 'text',
});
}
});
// Sort by combined score
return Array.from(combinedMap.values())
.sort((a, b) => b.combined_score - a.combined_score)
.slice(0, 20);
}
private generateHighlight(content: string, query: string): string {
if (!content) return '';
const words = query.toLowerCase().split(/\s+/);
const sentences = content.split(/[.!?]+/);
for (const sentence of sentences) {
const lowerSentence = sentence.toLowerCase();
if (words.some((word) => lowerSentence.includes(word))) {
return sentence.trim().substring(0, 200) + '...';
}
}
return content.substring(0, 200) + '...';
}
}

View File

@ -0,0 +1,185 @@
import { Injectable, Logger } from '@nestjs/common';
import { ConfigService } from '@nestjs/config';
import OpenAI from 'openai';
export interface EmbeddingConfig {
model: string;
apiKey?: string;
baseUrl?: string;
dimensions: number;
}
export interface EmbeddingResult {
embedding: number[];
tokens: number;
model: string;
}
@Injectable()
export class EmbeddingService {
private readonly logger = new Logger(EmbeddingService.name);
private readonly config: EmbeddingConfig;
private readonly openai: OpenAI;
constructor(private readonly configService: ConfigService) {
this.config = {
model: this.configService.get<string>(
'AI_EMBEDDING_MODEL',
'text-embedding-3-small',
),
apiKey: this.configService.get<string>('OPENAI_API_KEY'),
baseUrl: 'https://api.openai.com/v1/',
dimensions: Number(
this.configService.get<string>('AI_EMBEDDING_DIMENSIONS', '1536'),
),
};
if (!this.config.apiKey) {
this.logger.warn(
'OpenAI API key not configured. AI search will not work.',
);
}
// Initialize OpenAI client with optional custom base URL
this.openai = new OpenAI({
apiKey: this.config.apiKey || 'dummy-key',
baseURL: this.config.baseUrl,
});
}
/**
* Generate embedding for a single text
*/
async generateEmbedding(text: string): Promise<number[]> {
if (!text || text.trim().length === 0) {
throw new Error('Text cannot be empty');
}
const cleanText = this.preprocessText(text);
console.log('generate clean text', cleanText);
try {
const result = await this.generateEmbeddingWithOpenAI(cleanText);
console.log('embedding results', result);
return result.embedding;
} catch (error) {
this.logger.error(`Embedding generation failed:`, error);
}
}
/**
* Generate embeddings for multiple texts in batch
*/
async generateEmbeddings(texts: string[]): Promise<number[][]> {
if (!texts || texts.length === 0) {
return [];
}
const cleanTexts = texts.map((text) => this.preprocessText(text));
const batchSize = this.getBatchSize();
const results: number[][] = [];
for (let i = 0; i < cleanTexts.length; i += batchSize) {
const batch = cleanTexts.slice(i, i + batchSize);
try {
const batchResults = await this.generateBatchEmbeddings(batch);
results.push(...batchResults);
} catch (error) {
this.logger.error(
`Batch embedding generation failed for batch ${i}:`,
error,
);
throw error;
}
}
return results;
}
/**
* Generate embedding using OpenAI API
*/
private async generateEmbeddingWithOpenAI(
text: string,
): Promise<EmbeddingResult> {
const response = await this.openai.embeddings.create({
model: this.config.model,
input: text,
dimensions: this.config.dimensions,
});
if (!response.data || response.data.length === 0) {
throw new Error('Invalid response from OpenAI API');
}
return {
embedding: response.data[0].embedding,
tokens: response.usage?.total_tokens || 0,
model: this.config.model,
};
}
/**
* Generate embeddings for multiple texts
*/
private async generateBatchEmbeddings(texts: string[]): Promise<number[][]> {
const response = await this.openai.embeddings.create({
model: this.config.model,
input: texts,
dimensions: this.config.dimensions,
});
if (!response.data || !Array.isArray(response.data)) {
throw new Error('Invalid response from OpenAI API');
}
return response.data.map((item) => item.embedding);
}
/**
* Preprocess text before embedding generation
*/
private preprocessText(text: string): string {
if (!text) return '';
// Remove excessive whitespace
let processed = text.replace(/\s+/g, ' ').trim();
// Truncate if too long (most models have token limits)
const maxLength = 8000; // Conservative limit
if (processed.length > maxLength) {
processed = processed.substring(0, maxLength);
}
return processed;
}
/**
* Get batch size for OpenAI API
*/
private getBatchSize(): number {
return 100; // OpenAI supports up to 2048 inputs
}
/**
* Sleep utility for retries
*/
private sleep(ms: number): Promise<void> {
return new Promise((resolve) => setTimeout(resolve, ms));
}
/**
* Check if embedding service is configured
*/
isConfigured(): boolean {
return !!this.config.apiKey;
}
/**
* Get embedding configuration
*/
getConfig(): EmbeddingConfig {
return { ...this.config };
}
}

View File

@ -0,0 +1,393 @@
import { Injectable, Logger, OnModuleDestroy } from '@nestjs/common';
import {
VectorSearchOptions,
VectorSearchResult,
VectorService,
} from './vector.service';
import {
createClient,
RedisClientType,
SCHEMA_FIELD_TYPE,
SCHEMA_VECTOR_FIELD_ALGORITHM,
} from 'redis';
import { EnvironmentService } from '../../../integrations/environment/environment.service';
export interface IndexPageData {
pageId: string;
embedding: number[];
metadata: {
title?: string;
workspaceId: string;
spaceId?: string;
[key: string]: any;
};
}
export interface RedisVectorConfig {
host: string;
port: number;
password?: string;
db?: number;
indexName: string;
vectorDimension: number;
}
@Injectable()
export class RedisVectorService implements OnModuleDestroy {
private readonly logger = new Logger(RedisVectorService.name);
private readonly redis: RedisClientType;
private readonly config: RedisVectorConfig;
private isIndexCreated = false;
constructor(
private readonly environmentService: EnvironmentService,
private readonly vectorService: VectorService,
) {
//@ts-ignore
this.config = {
indexName: 'docmost_pages_index',
vectorDimension: 1536, //AI_EMBEDDING_DIMENSIONS
};
this.redis = createClient({
url: this.environmentService.getRedisUrl(),
});
this.redis.on('error', (err) => {
this.logger.error('Redis Client Error:', err);
});
this.initializeConnection();
}
async searchSimilar(
queryEmbedding: number[],
options: VectorSearchOptions,
): Promise<VectorSearchResult[]> {
try {
await this.ensureIndexExists();
const { limit = 20, offset = 0, threshold = 0.7, filters } = options;
// Build query following Redis specs
let query = `*=>[KNN ${limit + offset} @embedding $vector AS score]`;
// Apply filters if provided
if (filters && Object.keys(filters).length > 0) {
const filterClauses = Object.entries(filters).map(([key, value]) => {
if (Array.isArray(value)) {
return `@${key}:{${value.join('|')}}`;
}
return `@${key}:${value}`;
});
query = `(${filterClauses.join(' ')})=>[KNN ${limit + offset} @embedding $vector AS score]`;
}
// Execute search using proper node-redis syntax
const searchOptions = {
PARAMS: {
vector: Buffer.from(new Float32Array(queryEmbedding).buffer),
},
SORTBY: {
BY: '@score' as `@${string}`,
DIRECTION: 'ASC' as 'ASC',
},
LIMIT: {
from: offset,
size: limit,
},
RETURN: ['page_id', 'workspace_id', 'space_id', 'title', 'score'],
DIALECT: 2,
};
console.log(searchOptions);
//is not assignable to parameter of type FtSearchOptions
// Types of property SORTBY are incompatible.
// Type { BY: string; DIRECTION: string; } is not assignable to type
// RedisArgument | { BY: `@${string}` | `$.${string}`; DIRECTION?: 'DESC' | 'ASC'; }
const searchResult = await this.redis.ft.search(
this.config.indexName,
query,
searchOptions,
);
const results = this.parseSearchResults(searchResult, threshold);
this.logger.debug(`Vector search found ${results.length} results`);
return results;
} catch (error) {
this.logger.error('Vector search failed:', error);
throw new Error(`Vector search failed: ${error instanceof Error ? error.message : String(error)}`);
}
}
async indexPage(data: IndexPageData): Promise<void> {
try {
await this.ensureIndexExists();
const key = this.vectorService.createVectorKey(
data.pageId,
data.metadata.workspaceId,
);
// Store vector and metadata using proper node-redis hash operations
await this.redis.hSet(key, {
page_id: data.pageId,
workspace_id: data.metadata.workspaceId,
space_id: data.metadata.spaceId || '',
title: data.metadata.title || '',
embedding: Buffer.from(new Float32Array(data.embedding).buffer),
indexed_at: Date.now().toString(),
});
// Set TTL for the key
await this.redis.expire(key, 86400 * 30); // 30 days TTL
this.logger.debug(
`Indexed page ${data.pageId} in workspace ${data.metadata.workspaceId}`,
);
} catch (error) {
this.logger.error(
`Failed to index page ${data.pageId}: ${error?.['message']}`,
error,
);
throw error;
}
}
async deletePage(pageId: string, workspaceId: string): Promise<void> {
try {
const key = this.vectorService.createVectorKey(pageId, workspaceId);
await this.redis.del(key);
this.logger.debug(`Deleted page ${pageId} from vector index`);
} catch (error) {
this.logger.error(
`Failed to delete page ${pageId}: ${error?.['message']}`,
error,
);
throw error;
}
}
async batchIndexPages(
pages: IndexPageData[],
): Promise<{ indexed: number; errors: string[] }> {
const errors: string[] = [];
let indexed = 0;
try {
await this.ensureIndexExists();
// Process in batches to avoid memory issues
const batchSize = 100;
for (let i = 0; i < pages.length; i += batchSize) {
const batch = pages.slice(i, i + batchSize);
// Use node-redis multi for batch operations
const multi = this.redis.multi();
for (const page of batch) {
try {
const key = this.vectorService.createVectorKey(
page.pageId,
page.metadata.workspaceId,
);
multi.hSet(key, {
page_id: page.pageId,
workspace_id: page.metadata.workspaceId,
space_id: page.metadata.spaceId || '',
title: page.metadata.title || '',
embedding: Buffer.from(new Float32Array(page.embedding).buffer),
indexed_at: Date.now().toString(),
});
multi.expire(key, 86400 * 30);
} catch (error) {
errors.push(`Page ${page.pageId}: ${error?.['message']}`);
}
}
const results = await multi.exec();
// Count successful operations
const batchIndexed =
//@ts-ignore
results?.filter((result) => !result.error).length || 0;
indexed += Math.floor(batchIndexed / 2); // Each page has 2 operations (hSet + expire)
}
this.logger.log(
`Batch indexed ${indexed} pages with ${errors.length} errors`,
);
return { indexed, errors };
} catch (error) {
this.logger.error(`Batch indexing failed: ${error?.['message']}`, error);
throw error;
}
}
private async initializeConnection(): Promise<void> {
try {
await this.redis.connect();
console.log('create');
await this.createIndex();
this.isIndexCreated = true;
this.logger.log('Redis vector database connected and index initialized');
} catch (error) {
this.logger.error(
`Failed to initialize vector index: ${error?.['message']}`,
error,
);
console.error(error);
}
}
private async ensureIndexExists(): Promise<void> {
console.log('creating index 1111');
if (!this.isIndexCreated) {
console.log('creating index');
await this.createIndex();
this.isIndexCreated = true;
}
}
private async createIndex(): Promise<void> {
try {
// Check if index already exists using proper node-redis syntax
await this.redis.ft.info(this.config.indexName);
this.logger.debug(`Vector index ${this.config.indexName} already exists`);
return;
} catch (error) {
// Index doesn't exist, create it
}
try {
// Create index using proper node-redis schema definition
await this.redis.ft.create(
this.config.indexName,
{
page_id: {
type: SCHEMA_FIELD_TYPE.TEXT,
SORTABLE: true,
},
workspace_id: {
type: SCHEMA_FIELD_TYPE.TEXT,
SORTABLE: true,
},
space_id: {
type: SCHEMA_FIELD_TYPE.TEXT,
},
title: {
type: SCHEMA_FIELD_TYPE.TEXT,
},
embedding: {
type: SCHEMA_FIELD_TYPE.VECTOR,
ALGORITHM: SCHEMA_VECTOR_FIELD_ALGORITHM.HNSW,
TYPE: 'FLOAT32',
DIM: this.config.vectorDimension,
DISTANCE_METRIC: 'COSINE',
},
indexed_at: {
type: SCHEMA_FIELD_TYPE.NUMERIC,
SORTABLE: true,
},
},
{
ON: 'HASH',
PREFIX: 'vector:',
},
);
this.logger.log(`Created vector index ${this.config.indexName}`);
} catch (error) {
if (error?.['message']?.includes('Index already exists')) {
this.logger.debug('Vector index already exists');
} else {
throw error;
}
}
}
private parseSearchResults(
results: any,
threshold: number,
): VectorSearchResult[] {
if (!results?.documents || results.documents.length === 0) {
return [];
}
const parsed: VectorSearchResult[] = [];
for (const doc of results.documents) {
const distance = parseFloat(doc.value?.distance || '1');
const similarity = 1 - distance; // Convert distance to similarity
if (similarity >= threshold) {
parsed.push({
pageId: doc.value?.page_id || doc.id.split(':')[1],
score: similarity,
metadata: {
workspaceId: doc.value?.workspace_id,
spaceId: doc.value?.space_id,
title: doc.value?.title,
distance,
},
});
}
}
return parsed;
}
async getIndexStats(): Promise<{
totalDocs: number;
indexSize: string;
vectorCount: number;
}> {
try {
const info = await this.redis.ft.info(this.config.indexName);
return {
//@ts-ignore
totalDocs: info.numDocs || 0,
//@ts-ignore
indexSize: info.indexSize || '0',
//@ts-ignore
vectorCount: info.numDocs || 0,
};
} catch (error) {
this.logger.error(`Failed to get index stats: ${error?.['message']}`);
return { totalDocs: 0, indexSize: '0', vectorCount: 0 };
}
}
async deleteIndex(): Promise<void> {
try {
await this.redis.ft.dropIndex(this.config.indexName);
this.isIndexCreated = false;
this.logger.log(`Deleted vector index ${this.config.indexName}`);
} catch (error) {
this.logger.error(`Failed to delete index: ${error?.['message']}`);
throw error;
}
}
async disconnect(): Promise<void> {
try {
await this.redis.quit();
this.logger.log('Redis vector database disconnected');
} catch (error) {
this.logger.error(
`Failed to disconnect from Redis: ${error?.['message']}`,
);
}
}
async onModuleDestroy() {
await this.disconnect();
}
}

View File

@ -0,0 +1,216 @@
import { Injectable, Logger } from '@nestjs/common';
export interface VectorSearchResult {
pageId: string;
score: number;
metadata?: Record<string, any>;
}
export interface VectorSearchOptions {
limit?: number;
offset?: number;
threshold?: number;
filters?: Record<string, any>;
}
@Injectable()
export class VectorService {
private readonly logger = new Logger(VectorService.name);
/**
* Calculate cosine similarity between two vectors
*/
cosineSimilarity(vectorA: number[], vectorB: number[]): number {
if (vectorA.length !== vectorB.length) {
throw new Error('Vectors must have the same length');
}
let dotProduct = 0;
let normA = 0;
let normB = 0;
for (let i = 0; i < vectorA.length; i++) {
dotProduct += vectorA[i] * vectorB[i];
normA += vectorA[i] * vectorA[i];
normB += vectorB[i] * vectorB[i];
}
const magnitude = Math.sqrt(normA) * Math.sqrt(normB);
if (magnitude === 0) {
return 0;
}
return dotProduct / magnitude;
}
/**
* Calculate Euclidean distance between two vectors
*/
euclideanDistance(vectorA: number[], vectorB: number[]): number {
if (vectorA.length !== vectorB.length) {
throw new Error('Vectors must have the same length');
}
let sum = 0;
for (let i = 0; i < vectorA.length; i++) {
const diff = vectorA[i] - vectorB[i];
sum += diff * diff;
}
return Math.sqrt(sum);
}
/**
* Calculate dot product similarity
*/
dotProductSimilarity(vectorA: number[], vectorB: number[]): number {
if (vectorA.length !== vectorB.length) {
throw new Error('Vectors must have the same length');
}
let dotProduct = 0;
for (let i = 0; i < vectorA.length; i++) {
dotProduct += vectorA[i] * vectorB[i];
}
return dotProduct;
}
/**
* Normalize a vector to unit length
*/
normalizeVector(vector: number[]): number[] {
const magnitude = Math.sqrt(
vector.reduce((sum, val) => sum + val * val, 0),
);
if (magnitude === 0) {
return vector;
}
return vector.map((val) => val / magnitude);
}
/**
* Convert vector to string format for Redis storage
*/
vectorToString(vector: number[]): string {
return vector.join(',');
}
/**
* Parse vector from string format
*/
stringToVector(vectorString: string): number[] {
return vectorString.split(',').map((val) => parseFloat(val));
}
/**
* Validate vector format and dimensions
*/
validateVector(vector: number[], expectedDimensions?: number): boolean {
if (!Array.isArray(vector)) {
return false;
}
if (vector.length === 0) {
return false;
}
if (expectedDimensions && vector.length !== expectedDimensions) {
return false;
}
return vector.every((val) => typeof val === 'number' && !isNaN(val));
}
/**
* Calculate similarity score with configurable method
*/
calculateSimilarity(
vectorA: number[],
vectorB: number[],
method: 'cosine' | 'euclidean' | 'dot' = 'cosine',
): number {
switch (method) {
case 'cosine':
return this.cosineSimilarity(vectorA, vectorB);
case 'euclidean': // Convert distance to similarity (0-1 scale)
{
const distance = this.euclideanDistance(vectorA, vectorB);
return 1 / (1 + distance);
}
case 'dot':
return this.dotProductSimilarity(vectorA, vectorB);
default:
throw new Error(`Unsupported similarity method: ${method}`);
}
}
/**
* Filter results by similarity threshold
*/
filterByThreshold(
results: VectorSearchResult[],
threshold: number,
): VectorSearchResult[] {
return results.filter((result) => result.score >= threshold);
}
/**
* Sort results by similarity score (descending)
*/
sortByScore(results: VectorSearchResult[]): VectorSearchResult[] {
return results.sort((a, b) => b.score - a.score);
}
/**
* Apply pagination to results
*/
paginateResults(
results: VectorSearchResult[],
offset: number = 0,
limit: number = 20,
): VectorSearchResult[] {
return results.slice(offset, offset + limit);
}
/**
* Create vector index key for Redis
*/
createVectorKey(pageId: string, workspaceId: string): string {
return `vector:${workspaceId}:${pageId}`;
}
/**
* Create metadata key for Redis
*/
createMetadataKey(pageId: string, workspaceId: string): string {
return `metadata:${workspaceId}:${pageId}`;
}
/**
* Batch process vectors with chunking
*/
async batchProcess<T, R>(
items: T[],
processor: (batch: T[]) => Promise<R[]>,
batchSize: number = 100,
): Promise<R[]> {
const results: R[] = [];
for (let i = 0; i < items.length; i += batchSize) {
const batch = items.slice(i, i + batchSize);
try {
const batchResults = await processor(batch);
results.push(...batchResults);
} catch (error) {
this.logger.error(
`Batch processing failed for items ${i}-${i + batch.length}:`,
error,
);
throw error;
}
}
return results;
}
}

View File

@ -11,6 +11,7 @@ import { PageModule } from './page/page.module';
import { AttachmentModule } from './attachment/attachment.module';
import { CommentModule } from './comment/comment.module';
import { SearchModule } from './search/search.module';
import { AiSearchModule } from './ai-search/ai-search.module';
import { SpaceModule } from './space/space.module';
import { GroupModule } from './group/group.module';
import { CaslModule } from './casl/casl.module';
@ -26,6 +27,7 @@ import { ShareModule } from './share/share.module';
AttachmentModule,
CommentModule,
SearchModule,
AiSearchModule,
SpaceModule,
GroupModule,
CaslModule,

View File

@ -140,7 +140,7 @@ export class SearchService {
if (suggestion.includeUsers) {
users = await this.db
.selectFrom('users')
.select(['id', 'name', 'email', 'avatarUrl'])
.select(['id', 'name', 'avatarUrl'])
.where((eb) => eb(sql`LOWER(users.name)`, 'like', `%${query}%`))
.where('workspaceId', '=', workspaceId)
.where('deletedAt', 'is', null)

View File

@ -17,5 +17,4 @@ export * from "./lib/excalidraw";
export * from "./lib/embed";
export * from "./lib/mention";
export * from "./lib/markdown";
export * from "./lib/search-and-replace";
export * from "./lib/embed-provider";

View File

@ -35,42 +35,6 @@ export const CustomCodeBlock = CodeBlockLowlight.extend<CustomCodeBlockOptions>(
return true;
}
},
"Mod-a": () => {
if (this.editor.isActive("codeBlock")) {
const { state } = this.editor;
const { $from } = state.selection;
let codeBlockNode = null;
let codeBlockPos = null;
let depth = 0;
for (depth = $from.depth; depth > 0; depth--) {
const node = $from.node(depth);
if (node.type.name === "codeBlock") {
codeBlockNode = node;
codeBlockPos = $from.start(depth) - 1;
break;
}
}
if (codeBlockNode && codeBlockPos !== null) {
const codeBlockStart = codeBlockPos;
const codeBlockEnd = codeBlockPos + codeBlockNode.nodeSize;
const contentStart = codeBlockStart + 1;
const contentEnd = codeBlockEnd - 1;
this.editor.commands.setTextSelection({
from: contentStart,
to: contentEnd,
});
return true;
}
}
return false;
},
};
},

View File

@ -1,3 +0,0 @@
import { SearchAndReplace } from './search-and-replace'
export * from './search-and-replace'
export default SearchAndReplace

View File

@ -1,455 +0,0 @@
/***
MIT License
Copyright (c) 2023 - 2024 Jeet Mandaliya (Github Username: sereneinserenade)
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
***/
import { Extension, Range, type Dispatch } from "@tiptap/core";
import { Decoration, DecorationSet } from "@tiptap/pm/view";
import {
Plugin,
PluginKey,
type EditorState,
type Transaction,
} from "@tiptap/pm/state";
import { Node as PMNode, Mark } from "@tiptap/pm/model";
declare module "@tiptap/core" {
interface Commands<ReturnType> {
search: {
/**
* @description Set search term in extension.
*/
setSearchTerm: (searchTerm: string) => ReturnType;
/**
* @description Set replace term in extension.
*/
setReplaceTerm: (replaceTerm: string) => ReturnType;
/**
* @description Set case sensitivity in extension.
*/
setCaseSensitive: (caseSensitive: boolean) => ReturnType;
/**
* @description Reset current search result to first instance.
*/
resetIndex: () => ReturnType;
/**
* @description Find next instance of search result.
*/
nextSearchResult: () => ReturnType;
/**
* @description Find previous instance of search result.
*/
previousSearchResult: () => ReturnType;
/**
* @description Replace first instance of search result with given replace term.
*/
replace: () => ReturnType;
/**
* @description Replace all instances of search result with given replace term.
*/
replaceAll: () => ReturnType;
/**
* @description Find selected instance of search result.
*/
selectCurrentItem: () => ReturnType;
};
}
}
interface TextNodesWithPosition {
text: string;
pos: number;
}
const getRegex = (
s: string,
disableRegex: boolean,
caseSensitive: boolean,
): RegExp => {
return RegExp(
disableRegex ? s.replace(/[.*+?^${}()|[\]\\]/g, "\\$&") : s,
caseSensitive ? "gu" : "gui",
);
};
interface ProcessedSearches {
decorationsToReturn: DecorationSet;
results: Range[];
}
function processSearches(
doc: PMNode,
searchTerm: RegExp,
searchResultClass: string,
resultIndex: number,
): ProcessedSearches {
const decorations: Decoration[] = [];
const results: Range[] = [];
let textNodesWithPosition: TextNodesWithPosition[] = [];
let index = 0;
if (!searchTerm) {
return {
decorationsToReturn: DecorationSet.empty,
results: [],
};
}
doc?.descendants((node, pos) => {
if (node.isText) {
if (textNodesWithPosition[index]) {
textNodesWithPosition[index] = {
text: textNodesWithPosition[index].text + node.text,
pos: textNodesWithPosition[index].pos,
};
} else {
textNodesWithPosition[index] = {
text: `${node.text}`,
pos,
};
}
} else {
index += 1;
}
});
textNodesWithPosition = textNodesWithPosition.filter(Boolean);
for (const element of textNodesWithPosition) {
const { text, pos } = element;
const matches = Array.from(text.matchAll(searchTerm)).filter(
([matchText]) => matchText.trim(),
);
for (const m of matches) {
if (m[0] === "") break;
if (m.index !== undefined) {
results.push({
from: pos + m.index,
to: pos + m.index + m[0].length,
});
}
}
}
for (let i = 0; i < results.length; i += 1) {
const r = results[i];
const className =
i === resultIndex
? `${searchResultClass} ${searchResultClass}-current`
: searchResultClass;
const decoration: Decoration = Decoration.inline(r.from, r.to, {
class: className,
});
decorations.push(decoration);
}
return {
decorationsToReturn: DecorationSet.create(doc, decorations),
results,
};
}
const replace = (
replaceTerm: string,
results: Range[],
resultIndex: number,
{ state, dispatch }: { state: EditorState; dispatch: Dispatch },
) => {
const firstResult = results[resultIndex];
if (!firstResult) return;
const { from, to } = results[resultIndex];
if (dispatch) {
const tr = state.tr;
// Get all marks that span the text being replaced
const marksSet = new Set<Mark>();
state.doc.nodesBetween(from, to, (node) => {
if (node.isText && node.marks) {
node.marks.forEach(mark => marksSet.add(mark));
}
});
const marks = Array.from(marksSet);
// Delete the old text and insert new text with preserved marks
tr.delete(from, to);
tr.insert(from, state.schema.text(replaceTerm, marks));
dispatch(tr);
}
};
const replaceAll = (
replaceTerm: string,
results: Range[],
{ tr, dispatch }: { tr: Transaction; dispatch: Dispatch },
) => {
const resultsCopy = results.slice();
if (!resultsCopy.length) return;
// Process replacements in reverse order to avoid position shifting issues
for (let i = resultsCopy.length - 1; i >= 0; i -= 1) {
const { from, to } = resultsCopy[i];
// Get all marks that span the text being replaced
const marksSet = new Set<Mark>();
tr.doc.nodesBetween(from, to, (node) => {
if (node.isText && node.marks) {
node.marks.forEach(mark => marksSet.add(mark));
}
});
const marks = Array.from(marksSet);
// Delete and insert with preserved marks
tr.delete(from, to);
tr.insert(from, tr.doc.type.schema.text(replaceTerm, marks));
}
dispatch(tr);
};
export const searchAndReplacePluginKey = new PluginKey(
"searchAndReplacePlugin",
);
export interface SearchAndReplaceOptions {
searchResultClass: string;
disableRegex: boolean;
}
export interface SearchAndReplaceStorage {
searchTerm: string;
replaceTerm: string;
results: Range[];
lastSearchTerm: string;
caseSensitive: boolean;
lastCaseSensitive: boolean;
resultIndex: number;
lastResultIndex: number;
}
export const SearchAndReplace = Extension.create<
SearchAndReplaceOptions,
SearchAndReplaceStorage
>({
name: "searchAndReplace",
addOptions() {
return {
searchResultClass: "search-result",
disableRegex: true,
};
},
addStorage() {
return {
searchTerm: "",
replaceTerm: "",
results: [],
lastSearchTerm: "",
caseSensitive: false,
lastCaseSensitive: false,
resultIndex: 0,
lastResultIndex: 0,
};
},
addCommands() {
return {
setSearchTerm:
(searchTerm: string) =>
({ editor }) => {
editor.storage.searchAndReplace.searchTerm = searchTerm;
return false;
},
setReplaceTerm:
(replaceTerm: string) =>
({ editor }) => {
editor.storage.searchAndReplace.replaceTerm = replaceTerm;
return false;
},
setCaseSensitive:
(caseSensitive: boolean) =>
({ editor }) => {
editor.storage.searchAndReplace.caseSensitive = caseSensitive;
return false;
},
resetIndex:
() =>
({ editor }) => {
editor.storage.searchAndReplace.resultIndex = 0;
return false;
},
nextSearchResult:
() =>
({ editor }) => {
const { results, resultIndex } = editor.storage.searchAndReplace;
const nextIndex = resultIndex + 1;
if (results[nextIndex]) {
editor.storage.searchAndReplace.resultIndex = nextIndex;
} else {
editor.storage.searchAndReplace.resultIndex = 0;
}
return false;
},
previousSearchResult:
() =>
({ editor }) => {
const { results, resultIndex } = editor.storage.searchAndReplace;
const prevIndex = resultIndex - 1;
if (results[prevIndex]) {
editor.storage.searchAndReplace.resultIndex = prevIndex;
} else {
editor.storage.searchAndReplace.resultIndex = results.length - 1;
}
return false;
},
replace:
() =>
({ editor, state, dispatch }) => {
const { replaceTerm, results, resultIndex } =
editor.storage.searchAndReplace;
replace(replaceTerm, results, resultIndex, { state, dispatch });
// After replace, adjust index if needed
// The results will be recalculated by the plugin, but we need to ensure
// the index doesn't exceed the new bounds
setTimeout(() => {
const newResultsLength = editor.storage.searchAndReplace.results.length;
if (newResultsLength > 0 && editor.storage.searchAndReplace.resultIndex >= newResultsLength) {
// Keep the same position if possible, otherwise go to the last result
editor.storage.searchAndReplace.resultIndex = Math.min(resultIndex, newResultsLength - 1);
}
}, 0);
return false;
},
replaceAll:
() =>
({ editor, tr, dispatch }) => {
const { replaceTerm, results } = editor.storage.searchAndReplace;
replaceAll(replaceTerm, results, { tr, dispatch });
return false;
},
selectCurrentItem:
() =>
({ editor }) => {
const { results } = editor.storage.searchAndReplace;
for (let i = 0; i < results.length; i++) {
if (
results[i].from == editor.state.selection.from &&
results[i].to == editor.state.selection.to
) {
editor.storage.searchAndReplace.resultIndex = i;
}
}
return false;
},
};
},
addProseMirrorPlugins() {
const editor = this.editor;
const { searchResultClass, disableRegex } = this.options;
const setLastSearchTerm = (t: string) =>
(editor.storage.searchAndReplace.lastSearchTerm = t);
const setLastCaseSensitive = (t: boolean) =>
(editor.storage.searchAndReplace.lastCaseSensitive = t);
const setLastResultIndex = (t: number) =>
(editor.storage.searchAndReplace.lastResultIndex = t);
return [
new Plugin({
key: searchAndReplacePluginKey,
state: {
init: () => DecorationSet.empty,
apply({ doc, docChanged }, oldState) {
const {
searchTerm,
lastSearchTerm,
caseSensitive,
lastCaseSensitive,
resultIndex,
lastResultIndex,
} = editor.storage.searchAndReplace;
if (
!docChanged &&
lastSearchTerm === searchTerm &&
lastCaseSensitive === caseSensitive &&
lastResultIndex === resultIndex
)
return oldState;
setLastSearchTerm(searchTerm);
setLastCaseSensitive(caseSensitive);
setLastResultIndex(resultIndex);
if (!searchTerm) {
editor.storage.searchAndReplace.results = [];
return DecorationSet.empty;
}
const { decorationsToReturn, results } = processSearches(
doc,
getRegex(searchTerm, disableRegex, caseSensitive),
searchResultClass,
resultIndex,
);
editor.storage.searchAndReplace.results = results;
return decorationsToReturn;
},
},
props: {
decorations(state) {
return this.getState(state);
},
},
}),
];
},
});
export default SearchAndReplace;

83
pnpm-lock.yaml generated
View File

@ -531,6 +531,9 @@ importers:
nodemailer:
specifier: ^7.0.3
version: 7.0.3
openai:
specifier: ^5.8.2
version: 5.8.2(ws@8.18.2)(zod@3.25.56)
openid-client:
specifier: ^5.7.1
version: 5.7.1
@ -552,6 +555,9 @@ importers:
react:
specifier: ^18.3.1
version: 18.3.1
redis:
specifier: ^5.5.6
version: 5.5.6
reflect-metadata:
specifier: ^0.2.2
version: 0.2.2
@ -3349,6 +3355,34 @@ packages:
peerDependencies:
react: ^18.0 || ^19.0 || ^19.0.0-rc
'@redis/bloom@5.5.6':
resolution: {integrity: sha512-bNR3mxkwtfuCxNOzfV8B3R5zA1LiN57EH6zK4jVBIgzMzliNuReZXBFGnXvsi80/SYohajn78YdpYI+XNpqL+A==}
engines: {node: '>= 18'}
peerDependencies:
'@redis/client': ^5.5.6
'@redis/client@5.5.6':
resolution: {integrity: sha512-M3Svdwt6oSfyfQdqEr0L2HOJH2vK7GgCFx1NfAQvpWAT4+ljoT1L5S5cKT3dA9NJrxrOPDkdoTPWJnIrGCOcmw==}
engines: {node: '>= 18'}
'@redis/json@5.5.6':
resolution: {integrity: sha512-AIsoe3SsGQagqAmSQHaqxEinm5oCWr7zxPWL90kKaEdLJ+zw8KBznf2i9oK0WUFP5pFssSQUXqnscQKe2amfDQ==}
engines: {node: '>= 18'}
peerDependencies:
'@redis/client': ^5.5.6
'@redis/search@5.5.6':
resolution: {integrity: sha512-JSqasYqO0mVcHL7oxvbySRBBZYRYhFl3W7f0Da7BW8M/r0Z9wCiVrdjnN4/mKBpWZkoJT/iuisLUdPGhpKxBew==}
engines: {node: '>= 18'}
peerDependencies:
'@redis/client': ^5.5.6
'@redis/time-series@5.5.6':
resolution: {integrity: sha512-jkpcgq3NOI3TX7xEAJ3JgesJTxAx7k0m6lNxNsYdEM8KOl+xj7GaB/0CbLkoricZDmFSEAz7ClA1iK9XkGHf+Q==}
engines: {node: '>= 18'}
peerDependencies:
'@redis/client': ^5.5.6
'@remirror/core-constants@3.0.0':
resolution: {integrity: sha512-42aWfPrimMfDKDi4YegyS7x+/0tlzaqwPQCULLanv3DMIlu96KTJR0fM5isWX2UViOqlGnX6YFgqWepcX+XMNg==}
@ -7604,6 +7638,18 @@ packages:
resolution: {integrity: sha512-7x81NCL719oNbsq/3mh+hVrAWmFuEYUqrq/Iw3kUzH8ReypT9QQ0BLoJS7/G9k6N81XjW4qHWtjWwe/9eLy1EQ==}
engines: {node: '>=12'}
openai@5.8.2:
resolution: {integrity: sha512-8C+nzoHYgyYOXhHGN6r0fcb4SznuEn1R7YZMvlqDbnCuE0FM2mm3T1HiYW6WIcMS/F1Of2up/cSPjLPaWt0X9Q==}
hasBin: true
peerDependencies:
ws: ^8.18.0
zod: ^3.23.8
peerDependenciesMeta:
ws:
optional: true
zod:
optional: true
openid-client@5.7.1:
resolution: {integrity: sha512-jDBPgSVfTnkIh71Hg9pRvtJc6wTwqjRkN88+gCFtYWrlP4Yx2Dsrow8uPi3qLr/aeymPF3o2+dS+wOpglK04ew==}
@ -8326,6 +8372,10 @@ packages:
resolution: {integrity: sha512-DJnGAeenTdpMEH6uAJRK/uiyEIH9WVsUmoLwzudwGJUwZPp80PDBWPHXSAGNPwNvIXAbe7MSUB1zQFugFml66A==}
engines: {node: '>=4'}
redis@5.5.6:
resolution: {integrity: sha512-hbpqBfcuhWHOS9YLNcXcJ4akNr7HFX61Dq3JuFZ9S7uU7C7kvnzuH2PDIXOP62A3eevvACoG8UacuXP3N07xdg==}
engines: {node: '>= 18'}
redlock@4.2.0:
resolution: {integrity: sha512-j+oQlG+dOwcetUt2WJWttu4CZVeRzUrcVcISFmEmfyuwCVSJ93rDT7YSgg7H7rnxwoRyk/jU46kycVka5tW7jA==}
engines: {node: '>=8.0.0'}
@ -13028,6 +13078,26 @@ snapshots:
dependencies:
react: 18.3.1
'@redis/bloom@5.5.6(@redis/client@5.5.6)':
dependencies:
'@redis/client': 5.5.6
'@redis/client@5.5.6':
dependencies:
cluster-key-slot: 1.1.2
'@redis/json@5.5.6(@redis/client@5.5.6)':
dependencies:
'@redis/client': 5.5.6
'@redis/search@5.5.6(@redis/client@5.5.6)':
dependencies:
'@redis/client': 5.5.6
'@redis/time-series@5.5.6(@redis/client@5.5.6)':
dependencies:
'@redis/client': 5.5.6
'@remirror/core-constants@3.0.0': {}
'@rollup/rollup-android-arm-eabi@4.40.0':
@ -18140,6 +18210,11 @@ snapshots:
is-docker: 2.2.1
is-wsl: 2.2.0
openai@5.8.2(ws@8.18.2)(zod@3.25.56):
optionalDependencies:
ws: 8.18.2
zod: 3.25.56
openid-client@5.7.1:
dependencies:
jose: 4.15.9
@ -18922,6 +18997,14 @@ snapshots:
dependencies:
redis-errors: 1.2.0
redis@5.5.6:
dependencies:
'@redis/bloom': 5.5.6(@redis/client@5.5.6)
'@redis/client': 5.5.6
'@redis/json': 5.5.6(@redis/client@5.5.6)
'@redis/search': 5.5.6(@redis/client@5.5.6)
'@redis/time-series': 5.5.6(@redis/client@5.5.6)
redlock@4.2.0:
dependencies:
bluebird: 3.7.2